Receptors

  • David Robertson
  • Yelena Parfyonova
  • Mikhail Menshikov
  • Alan S. Hollister
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)

Abstract

In the past ten years, binding sites for more than two dozen neurotransmitters and hormones have been identified. With the exception of the thyroid and steroid hormone receptors, all neurotransmitter and peptide receptors have thus far been localized to the cell surface of the target organ. It has become clear that the membranes of most cells are endowed with a remarkably heterogeneous population of receptor sites.

Keywords

Multiple System Atrophy Atrial Natriuretic Peptide Adrenergic Receptor Receptor Site Radioligand Binding 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aarons, R. D., Nies, A. S., Gal, J., Hegstrand, L. R., & Molinoff, P. B. (1980). Elevation of beta-adrenergic receptor density in human lymphocytes after propranolol administration. Journal of Clinical Investigation, 65, 949–957.PubMedCrossRefGoogle Scholar
  2. Alexander, R. W. (1987). Adrenergic receptors in cardiovascular disease. In P. A. Insel (Ed.), Adrenergic receptors in man. New York: Dekker.Google Scholar
  3. Andersson, R. G. G., Nilsson, O. R., & Kuo, J. F. (1983). Beta-adrenoceptor-adenosine 3′-5′ monophosphate system in human leukocytes before and after treatment for hyperthyroidism. Journal of Clinical Endocrinology and Metabolism, 56, 42–45.PubMedCrossRefGoogle Scholar
  4. Ariëns, E. J. (1954). Affinity and intrinsic activity in the theory of competitive inhibition. Part I. Problems and theory. Archives Internationales de Pharmacodynamie, 99, 32–49.Google Scholar
  5. Banerjee, S. P., Kung, L. S., Riggi, S. J., & Chanda, S. K. (1977). Development of beta adrenergic receptor subsensitivity by antidepressants. Nature, 268, 455–456.PubMedCrossRefGoogle Scholar
  6. Bannister, R., Boylston, A. W., Davies, I. B., Mathias, C. J., Sever, P. S., & Sudera, D. (1981). Beta-receptor numbers and thermodynamics in denervation supersensitivity. Journal of Physiology (London) 319, 369–377.Google Scholar
  7. Benovic, J. L., Mayor, F., Jr., Somers, R. L., Caron, M. G., & Lefkowitz, R. J. (1986). Light-dependent phosphorylation of rhodopsin by β-adrenergic receptor kinase. Nature, 321, 869–872.PubMedCrossRefGoogle Scholar
  8. Berthelsen, S., & Pettinger, W. A. (1977). A functional basis for classification of α-adrenergic receptors. Life Sciences, 21, 595–606.PubMedCrossRefGoogle Scholar
  9. Bilezikian, J. P., & Loeb, J. N. (1983). The influence of hyperthyroidism and hypothyroidism on alpha-and beta-adrenergic receptor systems and adrenergic responsiveness. Endocrine Reviews, 4, 378–388.PubMedCrossRefGoogle Scholar
  10. Boon, N. A., Elliott, J. M., Davies, C. L., Conway, F. J., Jones, J. V., Grahame-Smith, D. G., & Sleight, P. (1983). Platelet α2-adrenoreceptors in borderline and established essential hypertension. Clinical Science, 65, 207–208.PubMedGoogle Scholar
  11. Bourne, H. R. (1986). One molecular machine can transduce diverse signals. Nature, 321, 814–816.PubMedCrossRefGoogle Scholar
  12. Bravo, E. L., Tarazi, R. C., Gifford, R. W., & Stewart, B. H. (1979). Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications. New England Journal of Medicine, 301, 682.PubMedCrossRefGoogle Scholar
  13. Brodde, O.-E. (1986). Molecular pharmacology of β-adrenoceptors. Journal of Cardiovascular Pharmacology, 8 (Suppl. 4), S16–S20.PubMedCrossRefGoogle Scholar
  14. Brodde, O.-E., Daul, A., & O’Hara, N. (1984). Beta-adrenoceptor changes in human lymphocytes induced by dynamic exercise. Naunyn-Schmiedebergs Archives of Pharmacology, 325, 190.CrossRefGoogle Scholar
  15. Brodde, O.-E., Daul, A. E., O’Hara, N., & Khalifa, A. M. (1985). Properties of α-and β-adrenoceptors in circulating blood cells of patients with essential hypertension. Journal of Cardiovascular Pharmacology, 7 (Suppl. 6), S162–S167.PubMedCrossRefGoogle Scholar
  16. Bürgisser, E., Raine, A. E. G., Erne, P., Kamber, B., & Bühler, F. R. (1986). Human cardiac plasma concentrations of atrial natriuretic peptide quantified by radioreceptor assay. Biochemical and Biophysical Research Communications, 133, 1201–1209.CrossRefGoogle Scholar
  17. Butler, J., Kelly, J. G., O’Malley, K., & Pidgeon, F. (1983). Beta-adrenergic adaptation to acute exercise. Journal of Physiology (London), 344, 1131.Google Scholar
  18. Cameron, O. G., Smith, C. B., Hollingsworth, P. J., Nesse, R. M., & Curtis, G. C. (1984). Platelet α2 adrenergic receptor binding and plasma catecholamines. Archives of General Psychiatry, 41, 1144–1148.PubMedCrossRefGoogle Scholar
  19. Chobanian, A. V., Tifft, C. P., Sackel, H., & Pitruzella, A. (1982). Alpha and beta adrenergic receptor activity in circulating blood cells of patients with idiopathic orthostatic hypotension and pheochromocytoma. Clinical and Experimental Hypertension, A4, 793–806.CrossRefGoogle Scholar
  20. Cognini, G., Piantanelli, L., Paolinelli, E., Orlandoni, P., Pelligrini, A., & Masera, N. (1983). Decreased beta-adrenergic receptor density in mononuclear leukocytes from thyroidectomized patients. Acta Endocrinologica, 103, 1–5.Google Scholar
  21. Colucci, W. S., Alexander, R. W., Williams, G. H., Rude, R. E., Holman, B. L., Konstam, M. A., Wynne, J., Mudge, G. H., Jr., & Braunwald, E. (1981). Decreased lymphocyte beta-adrenergic receptor density in patients with heart failure and tolerance to the beta-adrenergic agonist pirbuterol. New England Journal of Medicine, 305, 185–189.PubMedCrossRefGoogle Scholar
  22. Cryer, P. E. (1987). Adrenergic receptors in endocrine and metabolic diseases. In P. A. Insel (Ed.), Adrenergic receptors in man (pp. 285–301). New York: Dekker.Google Scholar
  23. Cundell, D., Danks, J., Phillips, M. J., & Davies, R. J. (1984). Effect of exercise on isoprenaline-induced lymphocyte cAMP production in atopic asthmatics and atopic and non-atopic, non-asthmatic subjects. Clinical Allergy, 24, 433.Google Scholar
  24. Daiguji, M., Meltzer, H. Y., Tang, C., & U’Prichard, D. C. (1981). Alpha-2-adrenergic receptors in platelet membranes of depressed patients: No change in number of 3H-yohimbine affinity. Life Sciences, 29, 2059–2064.PubMedCrossRefGoogle Scholar
  25. Davies, I. B., Sudera, D., Sagnella, G., Marchesi-Saviotti, E., Mathias, C., Bannister, R., & Sever, P. (1982). Increased numbers of alpha receptors in sympathetic denervation supersensitivity in man. Journal of Clinical Investigation, 69, 779–784.PubMedCrossRefGoogle Scholar
  26. DeBlasi, A., Lipartiti, M., Motulsky, H. J., Insel, P. A., & Fratelli, M. (1985). Agonist-induced redistribution of betaadrenergic receptors on intact human mononuclear leukocytes: Redistributed receptors are nonfunctional. Journal of Clinical Endocrinology and Metabolism, 61, 1081.CrossRefGoogle Scholar
  27. DeBlasi, A., Cotecchia, S., Fratelli, M., & Lipartiti, M. (1986). Agonist-induced beta-adrenoceptor internalization of intact human mononuclear leukocytes: Effects of temperature of mononuclear separation. Journal of Laboratory and Clinical Medicine, 107, 86.Google Scholar
  28. DeBlasi, A., Maisel, A. S., Feldman, R. D., Ziegler, M. G., Fratelli, M., Dilallo, M., Smith, D. A., Lai, C. Y. C., & Motulsky, H. J. (1986). In vivo regulation of β-adrenergic receptors on human mononuclear leukocytes: Assessment of receptor number, location, and function after posture change, exercise, and isoproterenol infusion. Journal of Clinical Endocrinology and Metabolism, 63, 847–853.PubMedCrossRefGoogle Scholar
  29. DeLean, A., Hancock, A. A., & Lefkowitz, R. J. (1982). Validation and statistical analysis of a computer modeling method for quantitative analysis of radioligand-binding data for mixtures of pharmacological receptor subtypes. Molecular Pharmacology, 21, 5–16.Google Scholar
  30. DeLean, A., Racz, K., Gutkowska, J., Nguyen, T.-T., Cantin, M., & Genest, J. (1984). Specific receptor-mediated inhibition by synthetic atrial natriuretic factor of hormonestimulated steroidogenesis in cultured bovine adrenal cells. Endocrinology, 115, 1636–1638.CrossRefGoogle Scholar
  31. Docherty, J. R., & O’Malley, K. (1985). Aging and alphaadrenoceptors. Clinical Science, 68 (Suppl. 10), 133S–136S.PubMedGoogle Scholar
  32. Edwards, A. J., Bacon, T. H., Elms, C. A., Verardi, R., Felder, M., & Knight, S. C. (1984). Changes in the populations of lymphoid cells in human peripheral blood following physical exercise. Clinical and Experimental immunology, 58, 420.PubMedGoogle Scholar
  33. Engel, G., Hoyer, D., Berthold, R., & Wagner, H. (1981). (±)-125Iodocyanopindolol, a new ligand for β-adrenoceptors: Identification and quantitation of subclasses of β-adrenoceptors in guinea-pig. Naunyn-Schmiedeberg’s Archives of Pharmacology, 317, 277–285.PubMedCrossRefGoogle Scholar
  34. Farde, L., Hall, H., Ehrin, E., & Sedvall, G. (1986). Quantitative analysis of D2 dopamine receptor binding in the living human brain by PET. Science, 231, 258–261.PubMedCrossRefGoogle Scholar
  35. Feldman, R. D., Limbird, L. E., Nadeau, J. H., FitzGerald, G. A., Robertson, D., & Wood, A. J. J. (1983). Dynamic regulation of leukocyte beta adrenergic receptor-agonist interactions by physiological changes in circulating catecholamines. Journal of Clinical Investigation, 72, 164.PubMedCrossRefGoogle Scholar
  36. Feldman, R. D., Limbird, L. E., Nadeau, J. H. J., Robertson, D., & Wood, A. J. J. (1984a). Alterations in leukocyte β-receptor affinity with aging: A potential explanation for altered β-adrenergic sensitivity in the elderly. New England Journal of Medicine, 310, 815–819.PubMedCrossRefGoogle Scholar
  37. Feldman, R. D., Limbird, L. E., Nadeau, J. H., Robertson, D., & Wood, A. J. J. (1984b). Leukocyte beta-receptor alterations in hypertensive subjects. Journal of Clinical Investigation, 73, 648.PubMedCrossRefGoogle Scholar
  38. Fraser, J. A., Nadeau, J. H. J., Robertson, D., & Wood, A. J. J. (1981). Regulation of human leukocyte beta receptors by endogenous catecholamines: Relationship of leukocyte beta receptor density to the cardiac sensitivity to isoproterenol. Journal of Clinical Investigation, 67, 1777–1784.PubMedCrossRefGoogle Scholar
  39. Gaddum, J. H. (1957). Theories of drug antagonism. Pharmacological Reviews, 9, 211–217.PubMedGoogle Scholar
  40. Garcia-Sevilla, J. A., Zia, A. P., Hollingsworth, P. J., Greden, J. F., & Smith, C. B. (1981). Platelet alpha2-adrenergic receptors in major depressive disorder: Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment. Archives of General Psychiatry, 38, 1327–1333.PubMedCrossRefGoogle Scholar
  41. Garnett, E. S., Firnau, G., & Nahmias, C. (1983). Dopamine visualized in the basal ganglia of living man. Nature, 305, 137–138.PubMedCrossRefGoogle Scholar
  42. Ginsberg, A. M., Clutter, W. E., Shah, S. D., & Cryer, P. E. (1981). Triiodothyronine-induced thyrotoxicosis increases mononuclear leukocyte beta-adrenergic receptor density in man. Journal of Clinical Investigation, 67, 1785–1791.PubMedCrossRefGoogle Scholar
  43. Goldberg, M. R., & Robertson, D. (1983). Yohimbine: A pharmacological probe for study of the α2-adrenergic receptor. Pharmacological Reviews, 35, 143–180.PubMedGoogle Scholar
  44. Goldberg, M. R., & Robertson, D. (1984). Evidence for the existence of vascular α2-adrenoreceptors in man. Hypertension, 6, 551–556.PubMedCrossRefGoogle Scholar
  45. Goldberg, M. R., Curatolo, P. W., Tung, C. S., & Robertson, D. (1982). Caffeine down-regulates β-adrenoreceptor density in rat forebrain. Neuroscience Letters, 31, 47–52.PubMedCrossRefGoogle Scholar
  46. Goldberg, M. R., Hollister, A. S., & Robertson, D. (1983). Influence of yohimbine on blood pressure, autonomic reflexes and plasma catecholamines. Hypertension, 5, 772–778.PubMedCrossRefGoogle Scholar
  47. Goldstein, A., Aronow, L., & Kaiman, S. M. (1974). Principles of drug action: The basis of pharmacology (2nd ed., pp. 82–111). New York: Wiley.Google Scholar
  48. Greenacre, J. K., & Conolly, M. E. (1978). Desensitization of the beta-adrenoceptor of lymphocytes from normal subjects and patients with phaeochromocytoma: Studies in vivo. British Journal of Pharmacology, 5, 191–197.CrossRefGoogle Scholar
  49. Grenningloh, G., Rienitz, A., Schmitt, B., Methfessel, C., Zensen, M., Beyreuther, K., Gundelfinger, E. D., & Betz, H. (1987). The strychnine-binding subunit of the glycine receptor shows homology with nicotinic acetylcholine receptors. Nature, 328, 215–220.PubMedCrossRefGoogle Scholar
  50. Guarnieri, T., Filburn, C. R., Zitnik, G. S., & Lakatta, E. G. (1980). Contractile and biochemical correlates of beta-adrenergic stimulation of the aged heart. American Journal of Physiology, 239, H501–H508.PubMedGoogle Scholar
  51. Hantraye, P., Loc’h, C., Tacke, U., Riche, D., Stulzaft, O., Doudet, D., Guibert, B., Naquet, R., Maziere, B., & Maziere, M. (1986). “In vivo” visualization by positron emission tomography of the progressive striatal dopamine receptor damage occurring in MPTP-intoxicated non-human primates. Life Sciences, 39, 1376–1378.CrossRefGoogle Scholar
  52. Harden, T. K. (1983). Agonist-induced desensitization of the beta-adrenergic receptor-linked adenylate cyclase. Pharmacological Reviews, 35, 5.PubMedGoogle Scholar
  53. Hoeldtke, R. D., & Climi, K. M. (1985). Effects of aging on catecholamine metabolism. Journal of Clinical Endocrinology and Metabolism, 60, 479–484.PubMedCrossRefGoogle Scholar
  54. Hoffman, J. W., Benson, H., Arns, P. A., Stainbrook, G. L., Landsberg L., Young, J. B., & Gill, A. (1982). Reduced sympathetic nervous system responsivity associated with the relaxation response. Science, 215, 190–192.PubMedCrossRefGoogle Scholar
  55. Hollister, A. S., FitzGerald, G. A., Nadeau, J. H. J., & Robertson, D. (1983). Acute reduction in human platelet α2-adrenoreceptor affinity for agonist by endogenous and exogenous catecholamines. Journal of Clinical Investigation, 72, 1498–1505.PubMedCrossRefGoogle Scholar
  56. Hollister, A. S., Onrot, J., Lonce, S., Nadeau, J. H. J., & Robertson, D. (1986). Plasma catecholamine modulation of α2-adrenoreceptor agonist affinity and sensitivity in normotensive and hypertensive human platelets. Journal of Clinical Investigation, 77, 1416–1421.PubMedCrossRefGoogle Scholar
  57. Hollister, A. S., Tanaka, I., Imada, T., Onrot, J., Biaggioni, I., Kincaid, D., Robertson, D., & Inagami, T. (1986). Sodium loading and posture modulate human atrial natriuretic factor plasma levels. Hypertension, 8, II106–11111.PubMedGoogle Scholar
  58. Hui, K. K. P., & Conolly, M. E. (1981). Increased numbers of beta receptors in orthostatic hypotension due to autonomic dysfunction. New England Journal of Medicine, 304, 1473–1476.PubMedCrossRefGoogle Scholar
  59. Hui, K. K. P., Wolfe, R. N., & Conolly, M. E. (1982). Lymphocyte beta-adrenergic receptors are not altered in hyperthyroidism. Clinical Pharmacology and Therapeutics, 32, 161–165.PubMedCrossRefGoogle Scholar
  60. Insel, P. A., & Motulsky, H. J. (1987). Adrenergic receptors in man. New York: Raven Press.Google Scholar
  61. Jennings, G., Bobik, A., & Esler, M. (1981). Beta receptors in orthostatic hypotension. New England Journal of Medicine, 305, 1019.CrossRefGoogle Scholar
  62. Kafka, M. S., Polinsky, R. J., Williams, A., Kopin, I. J., Lake, C. R., Ebert, M. H., & Tokola, N. A. (1984). Alphaadrenergic receptors in orthostatic hypotension syndromes. Neurology, 34, 1121–1125.PubMedCrossRefGoogle Scholar
  63. Karliner, J. S., Motulsky, H. J., & Insel, P. A. (1982). Apparent “down-regulation” of human platelet alpha2-adrenergic receptors is due to retained agonist. Molecular Pharmacology, 21, 36–43.PubMedGoogle Scholar
  64. Kenakin, T. P. (1984). The classification of drugs and drug receptors in isolated tissues. Pharmacological Reviews, 36, 165–222.PubMedGoogle Scholar
  65. Krall, J. F., Connelly, M., & Tuck, M. L. (1980). Acute regulation of beta adrenergic catecholamine sensitivity in human lymphocytes. Journal of Pharmacology and Experimental Therapeutics, 214, 554.PubMedGoogle Scholar
  66. Kubo, T., Fukuda, K., Mikami, A., Maeda, A., Takahashi, H., Mishina, M., Haga, T., Haga, K., Ichiyama, A., Kangawa, K., Kojima, M., Matsuo, H., Hirose, T., & Numa, S. (1986). Cloning, sequencing, and expression of complementary DNA encoding the muscarinic acetylcholine receptor. Nature, 323, 411–416.PubMedCrossRefGoogle Scholar
  67. Kuhar, M., & Unnerstall, J. R. (1985, February). Quantitative receptor mapping by autoradiography: Some current technical problems. Trends in Neurological Science, 49-53.Google Scholar
  68. Lefkowitz, R. J., & Caron, M. G. (1986). Regulation of adrenergic receptor function by phosphorylation. Journal of Molecular and Cellular Cardiology, 18, 885–895.PubMedCrossRefGoogle Scholar
  69. Levitzki, A. (1984). Receptors: A quantitative approach. Menlo Park: Benjamin/Cummings.Google Scholar
  70. Limbird, L. E. (1986). Cell surface receptors: A short course on theory and methods. The Hague: Nijhoff.CrossRefGoogle Scholar
  71. Mahan, L. C., Motulsky, H. J., & Insel, P. A. (1985). Do agonists promote rapid internalization of β-adrenergic receptors?. Proceedings of the National Academy of Sciences of the United States of America, 82, 6566–6570.PubMedCrossRefGoogle Scholar
  72. Mahan, L. C., McKernan, R. M., & Insel, P. A. (1987). Metabolism of alpha-and beta-adrenergic receptors in vitro and in vivo. Annual Reviews of Pharmacology and Toxicology, 27, 215–235.CrossRefGoogle Scholar
  73. Malbon, C. C., Graziano, M. P., & Johnson, G. L. (1984). Fat cell beta-adrenergic receptor in the hypothyroid rat: Impaired interaction with the stimulatory regulatory component of adenylate cyclase. Journal of Biological Chemistry, 259, 3254–3260PubMedGoogle Scholar
  74. Mann, J. J., Brown, R. P., Halper, J. P., Sweeney, J. A., Kocsis, J. H., Stokes, P. E., & Bilezikian, J. P. (1985). Reduced sensitivity of lymphocyte beta-adrenergic receptors in patients with endogenous depression and psychomotor agitation. New England Journal of Medicine, 313, 715–720.PubMedCrossRefGoogle Scholar
  75. Metz, A., Cowen, P. J., Gelder, M. G., Stump, K., Elliott, J. M., & Grahame-Smith, D. G. (1983). Changes in platelet alpha2-adrenoceptor binding post-partum: Possible relation to maternity blues. Lancet, 1, 495.PubMedCrossRefGoogle Scholar
  76. Mohring, J., Glanzer, K., Marciel, J. A., Jr., Dusing, R., Kramer, H. J., Arogast, R., & Koch-Weser, J. (1980). Greatly enhanced pressor response to antidiuretic hormone in patients with impaired cardiovascular reflexes due to idiopathic orthostatic hypotension. Journal of Cardiovascular Pharmacology, 2, 367–376.PubMedCrossRefGoogle Scholar
  77. Molinoff, P. B., Wolfe, B. B., & Weiland, G. A. (1981). Quantitative analysis of drug-receptor interactions. II. Determination of the properties of receptor subtypes. Life Sciences, 29, 427–443.PubMedCrossRefGoogle Scholar
  78. Motulsky, H. J., & Insel, P. A. (1982). Adrenergic receptors in man: Direct identification, physiologic regulation, and clinical alterations. New England Journal of Medicine, 307, 18–28.PubMedCrossRefGoogle Scholar
  79. Motulsky, H. J., & Mahan, L. C. (1984). The kinetics of competitive radioligand binding predicted by the law of mass action. Molecular Pharmacology, 25, 1–9.PubMedGoogle Scholar
  80. Motulsky, H. J., O’Connor, D. J., & Insel, P. A. (1983). Platelet α2adrenergic receptors in treated and untreated essential hypertension. Clinical Science, 64, 265–272.PubMedGoogle Scholar
  81. Motulsky, H. J., Cunningham, E. M. S., DeBlasi, A., & Insel, P. A. (1986). Agonists promote rapid desensitization and redistribution of beta adrenergic receptors on intact human mononuclear leukocytes. American Journal of Physiology, 250, E583.PubMedGoogle Scholar
  82. Munson, P. J., & Rodbard, D. (1980). LIGAND: A versatile computerized approach for characterization of ligand-binding systems. Analytical Biochemistry, 107, 220.PubMedCrossRefGoogle Scholar
  83. Nadi, N. S., Nurnberger, J. I., & Gershon, E. S. (1984). Muscarinic cholinergic receptors on skin fibroblasts in familial affective disorder. New England Journal of Medicine, 311, 225–230.PubMedCrossRefGoogle Scholar
  84. Nickerson, M. (1956). Receptor occupancy and tissue response. Nature, 78, 697–698.CrossRefGoogle Scholar
  85. Onrot, J., Goldberg, M. R., Biaggioni, I., Wiley, R., Hollister, A. S., & Robertson, D. (1987). Oral yohimbine in human autonomic failure. Neurology, 37, 215–220.PubMedCrossRefGoogle Scholar
  86. Pan, H. Y.-M., Hoffman, B. B., Pershe, R. A., & Blaschke, T. F. (1986). Decline in beta adrenergic receptor-mediated vascular relaxation with aging in man. Journal of Pharmacology and Experimental Therapeutics, 239, 802–807.PubMedGoogle Scholar
  87. Pandey, G. N., Heinze, W. J., Brown, B. D., & Davis, J. M. (1979). Electroconvulsive shock treatment decreases beta-adrenergic receptor sensitivity in rat brain. Nature, 280, 234–235.PubMedCrossRefGoogle Scholar
  88. Pfeifer, M. A., Ward, K., Malpass, T., Stratton, J., Halter, J., Evans, M., Beiter, H., Harker, L. A., & Porte, D., Jr. (1984). Variations in circulating catecholamines fail to alter human platelet alpha2-adrenergic receptor number or affinity for [3H]yohimbine or [3H]dihydroergocryptine. Journal of Clinical Investigation, 74, 1063–1072.PubMedCrossRefGoogle Scholar
  89. Ratge, D., Hansel-Bessey, S., & Wisser, H. (1985). Altered plasma catecholamines and numbers ofα-and β-adrenergic receptors in platelets and leucocytes in hyperthroid patients normalized under antithyroid treatment. Acta Endocrinologica, 110, 75–82.PubMedGoogle Scholar
  90. Reinhardt, D., Zehmisch, T., Becker, B., & Nagel-Hiemke, M. (1984). Age-dependency of alpha-and beta-adrenoceptors on thrombocytes and lymphocytes of asthmatic and nonasthmatic children. European Journal of Pediatrics, 142, 111–116.PubMedCrossRefGoogle Scholar
  91. Robertson, D., Goldberg, M. R., Hollister, A. S., Wade, D., & Robertson, R. M. (1983). Clonidine raises blood pressure in idiopathic orthostatic hypotension. American Journal of Medicine, 74, 193–199.PubMedCrossRefGoogle Scholar
  92. Robertson, D., Hollister, A. S., Carey, E. L., Tung, C. S., Goldberg, M. R., & Robertson, R. M. (1984). Increased vascular β2-adrenergic hypersensitivity in autonomic dysfunction. Journal of the American College of Cardiology, 3, 850–856.PubMedCrossRefGoogle Scholar
  93. Robertson, D., Goldberg, M. R., Hollister, A. S., Tung, C. S., & Robertson, R. M. (1986). Use of α2 adrenoreceptor agonists and antagonists in the functional assessment of the sympathetic nervous system. Journal of Clinical Investigation, 78, 576–581.PubMedCrossRefGoogle Scholar
  94. Robertson, D., Goldberg, M. R., Onrot, J., Hollister, A. S., Wiley, R., Thompson, J. G., & Robertson, R. M. (1986). Isolated failure of autonomic noradrenergic neurotransmission: Evidence for impaired β-hydroxylation of dopamine. New England Journal of Medicine, 314, 1494–1497.PubMedCrossRefGoogle Scholar
  95. Shattil, S. J., McDonough, M., Turnbull, J., & Insel, P. A. (1981). Characterization of alpha-adrenergic receptors in human platelets using [3H]clonidine. Molecular Pharmacology, 19, 179–183.PubMedGoogle Scholar
  96. Snavely, M. D., Motulsky, H. J., O’Connor, D. T., Ziegler, M. G., & Insel, P. A. (1982). Adrenergic receptors in human and experimental pheochromocytoma. Clinical and Experimental Hypertension, 4, 829–848.CrossRefGoogle Scholar
  97. Snyder, S. H. (1984). Cholinergic mechanisms in affective disorders. New England Journal of Medicine, 311, 254–255.PubMedCrossRefGoogle Scholar
  98. Soppi, E., Varjo, P., Eskola, J., & Laitinen, L. A. (1982). Effect of strenuous physical stress on circulating lymphocyte number and function before and after training. Clinical and Laboratory Immunology, 8, 43.Google Scholar
  99. Sowers, J. R., Connelly-Fittinghoff, M., Tuck, M. L., & Krall, J. F. (1983). Acute changes in noradrenaline levels do not alter lymphocyte beta-adrenergic receptor concentrations in man. Cardiovascular Research, 17, 184.PubMedCrossRefGoogle Scholar
  100. Stephenson, R. P. (1956). A modification of receptor theory. British Journal of Pharmacology, 11, 379–393.Google Scholar
  101. Stiles, G. L., Caron, M. G., & Lefkowitz, R. J. (1984). Betaadrenergic receptors: Biochemical mechanisms of physiological regulation. Physiological Reviews, 64, 661–743.PubMedGoogle Scholar
  102. Tohmen, J. F., Cryer, P. E. (1980). Biphasic adrenergic modulation of beta-adrenergic receptors in man: Agonist-induced early increment and late decrement in beta-adrenergic receptor number. Journal of Clinical Investigation, 65, 836.CrossRefGoogle Scholar
  103. Van Rossum, J. M., & Ariëns, E. J. (1962). Receptor reserve and threshold phenomena. II. Theories on drug-action and a quantitative approach to spare receptors and threshold values. Archives Internationales de Pharmacodynamie, 136, 385–413.Google Scholar
  104. Vetulani, J., & Sulser, F. (1975). Action of various antidepressant treatments reduces reactivity of noradrenergic cyclic AMP generating system in the limbic forebrain of the rat. Nature, 257, 495–496.PubMedCrossRefGoogle Scholar
  105. Villeneuve, A., Carpene, C., Berlan, M. D., & Lafontan, M. (1985). Lack of desensitization of alpha2-mediated inhibition of lipolysis in fat cells after acute and chronic treatment with clonidine. Journal of Pharmacology and Experimental Therapeutics, 233, 433–440.PubMedGoogle Scholar
  106. Wagner, H. N., Burns, H. D., Dannals, R. F., Wong, D. F., Langstrom, B., Duelfer, T., Frost, J. J., Ravert, H. T., Links, J. M., Rosenbloom, J. B., Luckas, S. E., Kramer, A. V., & Kuhar, M. J. (1983). Imaging dopamine receptors in the human brain by positron tomography. Science, 221, 1264–1266.PubMedCrossRefGoogle Scholar
  107. Weiland, G. A., & Molinoff, P. B. (1981). Quantitative analysis of drug-receptor interactions. I. Determination of kinetic and equilibrium properties. Life Sciences, 29, 313–330.PubMedCrossRefGoogle Scholar
  108. Wolfe, N., Cohen, B. M., & Gelenberg, A. J. (1987). Alpha-2-adrenergic receptors in platelet membranes of depressed patients: Increased affinity for 3H-yohimbine. Psychiatric Research, 20, 107–116.CrossRefGoogle Scholar
  109. Wong, D. F., Wagner, H. N., Jr., Tune, L. E., Dannals, R. F., Pearlson, G. D., Links, J. M., Tamminga, C. A., Broussolle, E. P., Ravert, H. T., Wilson, A. A., Toung, J. K. T., Malat, J., Williams, J. A., O’Tuama, L. A., Snyder, S. H., Kuhar, M. J., & Gjedde, A. (1986). Positron emission tomography reveals elevated D2 dopamine receptors in drug-naive schizophrenics. Science, 234, 1558–1562.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • David Robertson
    • 1
  • Yelena Parfyonova
    • 1
    • 2
  • Mikhail Menshikov
    • 1
    • 2
  • Alan S. Hollister
    • 1
  1. 1.Departments of Medicine and PharmacologyVanderbilt University Medical CenterNashvilleUSA
  2. 2.Myasnikov Institute of the All-Union Cardiological Research CenterMoscowUSSR

Personalised recommendations