Measurement and Function of Neuropeptides

Focus on Corticotropin-Releasing Factor and Arginine Vasopressin
  • George F. Koob
  • Garth Bissette
Part of the The Springer Series in Behavioral Psychophysiology and Medicine book series (SSBP)


Peptides are now known to be a class of intercellular messengers that are widely distributed throughout the central nervous system, peripheral nervous system, and various organs of the gastrointestinal tract. An intercellular messenger may be defined as “a substance released from one cell that is capable of modifying the functional activity of another neighboring or distant cell” (Brown & Fisher, 1984). Intercellular messengers may be hormones as in the classical sense or neurotropic substances that interact as neurotransmitters in the CNS. Most of the evidence for the action of neuropeptides as neurotransmitters centers on physiological and pharmacological-like activity of peptides administered exogenously, as well as identification of peptide receptors and to a limited extent the use of peptide antagonists. The actual measurement of release of neuropeptides has been limited, particularly as regards a neurotropic role in the CNS.


Corticotropin Release Factor Arginine Vasopressin Gastric Inhibitory Polypeptide Acoustic Startle Response Inhibitory Avoidance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akil, H., Watson, S. J., Young, E., Lewis, M. E., Khachaturian, H., & Walker, J. M. (1984). Endogenous opioids: Biology and function. Annual Reviews of Neuroscience, 7, 223–255.CrossRefGoogle Scholar
  2. Aldenhoff, J. B., Gruol, D. L., & Siggins, G. R. (1983). Corticotropin releasing factor decreases postburst hyperpolarizations and excites hippocampal neurons. Science, 221, 875–877.PubMedCrossRefGoogle Scholar
  3. Altura, B. M. (1967). Evaluation of neurohumoral substances in local regulation of blood flow. American Journal of Physiology, 212, 1447–1454.PubMedGoogle Scholar
  4. Banki, C. M., Bissette, G., Arato, M., O’Connor, L., & Nemeroff, C. B. (1987). Cerebrospinal fluid corticotropinreleasing factor-like immunoreactivity in depression and schizophrenia. American Journal of Psychiatry, 144, 873–877.PubMedGoogle Scholar
  5. Bankoski, K., Manning, M., Haider, J., & Sawyer, W. H. (1978). Testing of potent antagonists of the vasopressor response to arginine vasopressin. Journal of Medicinal Chemistry, 21, 850–853.CrossRefGoogle Scholar
  6. Barnard, R. R., & Morris, M. (1982). Cerebrospinal fluid vasopressin and oxytocin: Evidence for an osmotic response. Neuroscience Letters, 29, 275–279.PubMedCrossRefGoogle Scholar
  7. Berkowitz, B. A., & Sherman, S. (1982). Characterization of vasopressin analgesia. Journal of Pharmacology and Experimental Therapeutics, 220, 329–334.PubMedGoogle Scholar
  8. Bissette, G., Reynolds, G. P., Kilts, C. D., Widerlov, E., & Nemeroff, C. B. (1985). Corticotropin-releasing factor-like immunoreactivity in senile dementia of the Alzheimer’s type. Journal of the American Medical Association, 254, 3067–3069.PubMedCrossRefGoogle Scholar
  9. Bohus, B., Kovacs, G. L., & De Wied, D. (1978). Oxytocin, vasopressin and memory: Opposite effects on consolidation and retrieval processes. Brain Research, 157, 414–417.PubMedCrossRefGoogle Scholar
  10. Brown, M. R., & Fisher, L. A. (1984). Brain peptides as intercellular messengers. Journal of the American Medical Association, 251, 1310–1315.PubMedCrossRefGoogle Scholar
  11. Brown, M. R., Fisher, L. A., Rivier, J., Spiess, J., Rivier, C., & Vale, W. (1982). Corticotropin-releasing factor: Effects on the sympathetic nervous system and oxygen consumption. Life Sciences, 30, 207–210.PubMedCrossRefGoogle Scholar
  12. Brown, M. R., Fisher, L. A., Spiess, J., Rivier, J., Rivier, C., & Vale, W. (1982). Comparison of the biologic actions of corticotropin-releasing factor and sauvagine. Regulatory Peptides, 4, 107–114.PubMedCrossRefGoogle Scholar
  13. Brown, M. R., Gray, T. S., & Fisher, L. A. (1986). Corticotropin releasing factor receptor antagonist: Effects on the autonomic nervous system and cardiovascular function. Regulatory Peptides, 16, 321–329.PubMedCrossRefGoogle Scholar
  14. Carroll, B. J., Feinberg, M., Greden, J. F., Tarika, J., Albata, A. A., Haskett, R. F., James, N., Kronofol, Z., Lohr, N., Steiner, M., Vime, J. P., & Young, E. (1981). A specific laboratory test for the diagnosis of melancholia. Archives of General Psychiatry, 38, 15–22.PubMedCrossRefGoogle Scholar
  15. Coleman, R. J., & Reppert, S. M. (1985).The cerebrospinal fluid vasopressin rhythm is effectively insulated from osmotic regulation of blood pressure. American Journal of Physiology, 248, E346–E352.PubMedGoogle Scholar
  16. Demotes-Mainard, J., Chauveau, J., Rodriguez, F., Vincent, J. D., & Poulain, D. A. (1986). Septal release of vasopressin in response to osmotic, hypovolemic and electrical stimulation in rats. Brain Research, 381, 314–321.PubMedCrossRefGoogle Scholar
  17. DeSouza, E. B., Whitehouse, P. J., Kuhar, M. J., Price, D. L., & Vale, W. W. (1986). Reciprocal changes in corticotropin-releasing factor (CRF)-like immunoreactivity and CRF receptors in cerebral cortex of Alzheimer’s disease. Nature, 319, 593–595.CrossRefGoogle Scholar
  18. De Wied, D. (1971). Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats. Nature, 232, 58–60.PubMedCrossRefGoogle Scholar
  19. De Wied, D. (1976). Behavioral effects of intraventricularly administered vasopressin and vasopressin fragments. Life Sciences, 19, 685–690.PubMedCrossRefGoogle Scholar
  20. De Wied, D. (1977). Behavioral effects of neuropeptides related to ACTH, MSH and β-LPH. In D. Krieger & W. Ganong (Eds.), ACTH and related peptides: Structure, regulation and action (pp. 263–274). New York: Annals of the New York Academy of Sciences.Google Scholar
  21. De Wied, D, & Versteeg, D. H. G. (1979). Neurohypophyseal principles and memory. Federation Proceedings, 38, 2348–2354.PubMedGoogle Scholar
  22. Eaves, M,. Thatcher-Britton, K., Rivier, J., Vale, W., & Koob, G. F. (1985). Effects of corticotropin releasing factor on locomotor activity in hypophysectomized rats. Peptides, 6, 923–926.PubMedCrossRefGoogle Scholar
  23. Ehlers, C. L., Henriksen, S. J., Bloom, F. E., Rivier, J., & Vale, W. W. (1983). Corticotropin releasing factor produces increases in brain excitability and convulsive seizures in rats. Brain Research, 278, 332–336.PubMedCrossRefGoogle Scholar
  24. Ettenberg, A. (1985). Intracerebroventricular application of a pressor antagonist of vasopressin prevents both the “memory” and “aversive” actions of vasopressin. Behavior and Brain Research, 14, 201–211.CrossRefGoogle Scholar
  25. Ettenberg, A., Le Moal, M., Koob, G. F., & Bloom, F. E. (1983). Vasopressin potentiation in the performance of a learned appetitive task: Reversal by a pressor antagonist analog of vasopressin. Pharmacology, Biochemistry and Behavior, 18, 645–647.CrossRefGoogle Scholar
  26. Fessier, R. G., Brown, F. D., Rachlin, J. R., Mullan, S., & Fang, V. S. (1984). Elevated β-endorphin in cerebrospinal fluid after electrical brain stimulation: Artifact of contrast infusion?. Science, 224, 1017–1019.CrossRefGoogle Scholar
  27. Fisher, L. A., Rivier, J., Rivier, C., Spiess, J., Vale, W., & Brown, M. (1982). Corticotropin releasing factor (CRF): Central effects on mean arterial pressure and heart rate in rats. Endocrinology, 110, 2222–2224.PubMedCrossRefGoogle Scholar
  28. Gibbs, D. M. (1984). Dissociation of oxytocin, vasopressin and corticotropin secretion during different types of stress. Life Sciences, 35, 487–491.PubMedCrossRefGoogle Scholar
  29. Gillies, G. E., Linton, E. A., & Lowry, P. J. (1982). Corticotropin releasing activity of the new CRF is potentiated several times by vasopressin. Nature, 299, 355–357.PubMedCrossRefGoogle Scholar
  30. Gold, P. W., Chrousos, G., Kellner, C., Post, R., Roy, A., Augerines, P., Schultes, H., Oldfield, E., & Loriaux, D. L. (1984). Psychiatric implications of basic and clinical studies with corticotropin-releasing factor. American Journal of Psychiatry, 141, 619–627.PubMedGoogle Scholar
  31. Hambrook, J. M., Morgan, B. A., Rance, M. J., & Smith, C. F. C. (1976). Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature, 262, 782–783.PubMedCrossRefGoogle Scholar
  32. Hokfelt, T., Johansson, O., Ljungdahl, A., Lundberg, J. M., & Schultzberg, M. (1980). Peptidergic neurons. Nature, 284, 515–521.PubMedCrossRefGoogle Scholar
  33. Kasting, N. W., Veale, W. L., & Cooper, K. E. (1982). Vasopressin: A homeostatic effector in the febrile process. Neuroscience and Biobehavioral Research, 6, 215–222.CrossRefGoogle Scholar
  34. Kendler, K. S., Weitzman, R. E., & Fisher, D. A. (1978). The effect of pain on plasma arginine vasopressin concentration in man. Clinical Endocrinology, 8, 89–94.PubMedCrossRefGoogle Scholar
  35. Koob, G. F., & Bloom, F. E. (1985). Corticotropin-releasing factor and behavior. Federation Proceedings, 44, 259–263.PubMedGoogle Scholar
  36. Koob, G. F., Le Moal, M., Gaffori, O., Manning, M., Sawyer, W. H., Rivier, J., & Bloom, F. E. (1981). Arginine vasopressin and a vasopressin antagonist peptide: Opposite effects on extinction of active avoidance in rats. Regulatory Peptides, 2, 153–163.PubMedCrossRefGoogle Scholar
  37. Koob, G. F., Lebrun, C., Martinez, J. L., Jr., Bluthe, R. M., Dantzer, R., Bloom, F. E., & Le Moal, M. (1985). Use of arginine vasopressin antagonists in elucidating the mechanism of action for the behavioral effects of arginine vasopressin. In R. W. Schrier (Ed.), Vasopressin (pp. 195–201). New York: Raven Press.Google Scholar
  38. Koob, G. F., Dantzer, R., Bluthe, R. M., Lebrun, C., Bloom, F. E., & Le Moal, M. (1986). Central injections of arginine vasopressin prolong extinction of active avoidance. Peptides, 7, 213–218.PubMedCrossRefGoogle Scholar
  39. Laczi, F., Gaffori, O., Fekele, M., de Kloet, E. R., & De Wied, D. (1984). Levels of arginine vasopressin in cerebrospinal fluid during passive avoidance behavior in rats. Life Sciences, 2385-2391.Google Scholar
  40. Lebrun, C. J., Rigter, H., Martinez, J. L., Jr., Koob, G. F., Le Moal, M., & Bloom, F. E. (1984). Antagonism of effects of vasopressin (AVP) on inhibitory avoidance by a vasopressor antagonist peptide (dPtyr(Me)AVP). Life Sciences, 35, 1505–1512.PubMedCrossRefGoogle Scholar
  41. Le Moal, M., Koob, G. F., Koda, L. Y., Bloom, F. E., Manning, M., Sawyer, W. J., & Rivier, J. (1981). Vasopressor receptor antagonist prevents behavioral effects of vasopressin. Nature, 291, 491–493.PubMedCrossRefGoogle Scholar
  42. Levine, A. S., Rogers, B., Kwerp, J., Grace, M., & Morley, J. E. (1982). Effect of centrally administered corticotropin releasing factor (CRF) on multiple feeding paradigms. Neuropharmacology, 22, 337–339.CrossRefGoogle Scholar
  43. Loh, H. H., Tseng, L. F., Wei, E., & Li, C. H. (1976). β-Endorphin is a potent analgesic agent. Proceedings of the National Academy of Sciences of the United States of America, 73, 2895–2898.PubMedCrossRefGoogle Scholar
  44. Manning, M., & Sawyer, W. H. (1984). Design and uses of selective agonist and antagonistic analogs of the neuropep-tides oxytocin and vasopressin. Trends in Neuroscience, 7, 6–9.CrossRefGoogle Scholar
  45. Mens, W. B. J., Bouman, H. J., Baker, E. A. D., & van Wimersma Greidanus, T. B. (1980). Differential effects of various stimuli on AVP levels in blood and cerebrospinal fluid. European Journal of Pharmacology, 68, 89–92.PubMedCrossRefGoogle Scholar
  46. Morley, J. E., & Levine, A. S. (1983). Corticotropin-releasing factor, grooming and ingestive behavior. Life Sciences, 31, 1459–1464.CrossRefGoogle Scholar
  47. Nemeroff, C. B., Widerlov, E., Bissette, G., Walleus, H., Karlsson, I., Ecklund, K., Kilts, C. D., Loosen, P. T., & Vale, W. (1984). Elevated concentrations of CSF corticotropin-releasing factor like immunoreactivity in depressed patients. Science, 226, 1342–1344.PubMedCrossRefGoogle Scholar
  48. Oldfield, E. H., Schulte, H. M., Chrousos, G. P., Rock, J. P., Kornblith, P. A., O’Neill, D. L., Poplack, D. G., Gold, P. W., Cutter, G. B., Jr., & Loriaux, L. (1985). Active clearance of corticotropin-releasing factor from the cerebrospinal fluid. Neuroendocrinology, 40, 80–87.CrossRefGoogle Scholar
  49. Perlow, M. J., Reppert, S. M., Artman, H. A., Fisher, D. A., Seif, S. M., & Robinson, A. G. (1982). Oxytocin, vasopressin, and estrogen-stimulated neurophysin: Daily patterns of concentration in cerebrospinal fluid. Science, 216, 1416–1418.PubMedCrossRefGoogle Scholar
  50. Pittman, G. J., Lawrence, D., & McLean, L. (1982). Central effects of arginine vasopressin on blood pressure in rats. Endocrinology, 110, 1058–1061.PubMedCrossRefGoogle Scholar
  51. Plotsky, P. M., Bruhn, T. O., & Vale, W. (1985). Hypophysiotropic localization of vasopressin, oxytocin and neurophysin in the rat; its relationship with corticotropin function. Brain Research, 168, 275–286.Google Scholar
  52. Rivier, J., Rivier, C., & Vale, W. (1984). Synthetic competitive antagonists of corticotropin-releasing factor: Effect on ACTH secretion. Science, 224, 889–891.PubMedCrossRefGoogle Scholar
  53. Rocha E. Silva, M., Jr., & Rosenberg, M. (1969). The release of vasopressin in response to haemorrhage and its role in the mechanism of blood pressure regulations. Journal of Physiology 202, (London) 535–557.Google Scholar
  54. Rossier, J., Bayon, A., Vargo, T. M., & Ling, N. (1977). Radioimmunoassay of brain peptides: Evaluation of a methodology for the assay of β-endorphin and enkephalin. Life Sciences, 21, 847–852.PubMedCrossRefGoogle Scholar
  55. Rossier, J., Vargo, T. M., Minick, S., Ling, N., Bloom, F. E., & Guillemin, R. (1977). Regional dissociation of β-endorphin and enkephalin contents in rat brain and pituitary. Proceedings of the National Academy of Sciences of the United States of America, 74, 5162–5165.PubMedCrossRefGoogle Scholar
  56. Sachar, E. J., Hellman, L., Roffwang, H. P., Halpern, F. S., Fukushima, D. K., & Gallagher, T. F. (1973). Disrupted 24-hour patterns of cortisol secretion in psychotic depression. Archives of General Psychiatry, 28, 19–24.PubMedCrossRefGoogle Scholar
  57. Sawyer, W. H. (1964). Vertebrate neurohypophysial principles. Endocrinology, 75, 981–990.PubMedCrossRefGoogle Scholar
  58. Schulte, H. M., Chrousos, G. P., Booth, J. D., Oldfield, E. H., Gold, P. W., Cutter, G. B., Jr., & Loriaux, D. L. (1984). Corticotropin-releasing factor: Pharmacokinetics in man. Journal of Clinical Endocrinology and Metabolism, 58, 192–196.PubMedCrossRefGoogle Scholar
  59. Schwartz, W. J., Coleman, R. J., & Reppert, S. M. (1983). A daily vasopressin rhythm in rat cerebrospinal fluid. Brain Research, 263, 105–112.PubMedCrossRefGoogle Scholar
  60. Selye, H. (1980). Selye’s guide to stress research (pp. v–xiii). Princeton, NJ: Van Nostrand-Reinhold.Google Scholar
  61. Siggins, G. R., Gruol, D., Aldenhoff, J., & Pittman, Q. (1985). Electrophysiological actions of corticotropin-releasing factor in the central nervous system. Federation Proceedings, 44, 237–242.PubMedGoogle Scholar
  62. Stalla, G. K., Hartwimmer, J., Schopohl, J., von Werder, K., & Muller, O. A. (1986), Intravenous application of ovine and human corticotropin-releasing factor (CRF): ACTH, cortisol and CRF levels. Neuroendocrinology, 42, 1–5.PubMedCrossRefGoogle Scholar
  63. Stegner, H., Leake, R. D., Palmer, S. M., Oakes, G., & Fisher, D. A. (1984). The effect of hypoxia on neurohypophyseal hormone release in fetal and maternal sheep. Pediatric Research, 18, 188–191.PubMedCrossRefGoogle Scholar
  64. Straus, M. B. (1956). Body water in man (pp. 82–104). Boston: Little, Brown.Google Scholar
  65. Straus, E., & Yalow, R. S. (1977). Specific problems in the identification and quantitation of neuropeptides by radioimmunoassay. In H. Gainer (Ed.), Peptides in neurobiology (pp. 39–61). New York: Plenum Press.CrossRefGoogle Scholar
  66. Sutton, R., Koob, G., Le Moal, M., Rivier, J., & Vale, W. (1982). Corticotropin releasing factor (CRF) produces behavioral activation in rats. Nature, 299, 331–333.CrossRefGoogle Scholar
  67. Swerdlow, N., Geyer, M., Vale, W. W., & Koob, G. F. (1986). Corticotropin releasing factor potentiates acoustic startle in the rats: Blockade by chlordiazepoxide. Psychopharmacology, 88, 142–152.CrossRefGoogle Scholar
  68. Tache, Y., & Gunion, M. (1985). Corticotropin-releasing factor: Central action to influence gastric secretion. Federation Proceedings, 44, 255–258.PubMedGoogle Scholar
  69. Tache, Y., Goto, Y., Gunion, M., Vale, W., Rivier, J., & Brown, M. (1983). Inhibition of gastric acid secretion in rats by intracerebral injection of corticotropin-releasing factor. Science, 222, 935–937.PubMedCrossRefGoogle Scholar
  70. Tazi, A., Dantzer, R., Mormede, R., & Le Moal, M. (1983). Effects of post-trial administration of naloxone and β-endorphin on shock-induced fighting in rats. Behavioral and Neural Biology, 39, 192–202.PubMedCrossRefGoogle Scholar
  71. Tazi, A., Dantzer, R., Mormede, R., & Le Moal, M. (1985). Effects of post-trial injection of β-endorphin on shock-induced fighting are dependent on baseline of fighting. Behavioral and Neural Biology, 43, 322–326.PubMedCrossRefGoogle Scholar
  72. Tazi, A., Dantzer, R., Le Moal, M., & Koob, G. F. (1987). Corticotropin-releasing factor antagonist blocks stress-induced fighting in rats. Regulatory Peptides, 18, 37–42.PubMedCrossRefGoogle Scholar
  73. Thatcher-Britton, K., Morgan, J., Rivier, J., Vale, W., & Koob, G. F. (1985). Chlordiazepoxide attenuates CRF-in-duced response suppression in the conflict test. Psychopharmacology, 86, 150–174.Google Scholar
  74. Vale, W., Spiess, J., Rivier, C., & Rivier, J. (1981). Characterization of a 41-residue ovine hypothalamic peptide that stimulates the secretion of corticotropin and β-endorphin. Science, 213, 1394–1397.PubMedCrossRefGoogle Scholar
  75. Yates, F. E., Russell, S. M., Dallman, M. F., Hedge, G. A., McCann, S. M., & Dhariwal, A. P. A. (1971). Potentiation by vasopressin of corticotropin release induced by corticotropin-releasing factor. Endocrinology, 88, 3–15.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • George F. Koob
    • 1
  • Garth Bissette
    • 2
  1. 1.Division of Preclinical Neuroscience and EndocrinologyResearch Institute of Scripps ClinicLa JollaUSA
  2. 2.Laboratory of Psychoneuroendocrinology, Department of PsychiatryDuke University Medical CenterDurhamUSA

Personalised recommendations