Compensation of Visual Background Motion in Salamanders

  • Gerhard Manteuffel


Self-motion produces a shift of the whole visual environment across the retinae. Any object thus may fuse with the background or at least may be incorrectly locali7ed. Compensation of visual shifts caused by self-motion can be achieved by different strategies: (i) Head and/or eyes are stabilized with respect to the environment during locomotion; (ii) proprioceptive, labyrinthine and visual background motion signals are computed together with object signals in the localization systems of the CNS. Like in other vertebrates, gaze stabilization is present in salamanders and is mediated by the (visual) optokinetik reflex and the vestibulocolic reflex. These reflexes, however, relayed in the pretectum and the vestibular nuclei, are able to compensate only 50–80% of the shift velocity in salamanders. As a consequence, high retinal slip velocities may persist during locomotion. It is assumed that this residual retinal shift is directly computed in the optic tectum. Pretectal and vestibular nuclei were found to project to the optic tectum. Whereas the signal for retinal shift velocity from the pretectum is sent directly and bilaterally to the tectum, the vestibular nucleus projects to the contralateral dorsal tegmentum, and cells in this area send head velocity related signals to both tecta. The hypothesis is proposed that these synergistic inputs establish a directional selectivity in tectal columns which suppresses responses that would be elicited by objects moving in the same direction and speed as the background.


Optic Tectum Directional Selectivity Stimulus Velocity Optokinetic Nystagmus Background Motion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allman J, Miezin F, McGuiness E (1985) Stimulus specific responses from beyond the classical receptive field: neurophysiological mechanisms for local-global comparisons in visual neurons. Ann Rev Neurosci 8: 407–430CrossRefPubMedGoogle Scholar
  2. Arbib MA (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Lecture notes in biomathematics, Vol 45. Springer-Verlag, Berlin Heidelberg New York, pp 342–370CrossRefGoogle Scholar
  3. Birukow G (1938) Untersuchungen über den optischen Drehnystagmus und fiber die Sehschärfe des Grasfrosches (Rana temporaria). Z Vergl Physiol25: 92–142Google Scholar
  4. Blanks RHI, Precht W (1976) Functional characterization of primary vestibular afferents in the frog. R Brain Res 25: 369–390Google Scholar
  5. Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from selfinduced motion in toads Bufo bufo (L). J Comp Physiol152: 241–249Google Scholar
  6. Biirgi S (1957) Das Tectum opticum. Seine Verbindungen bei der Katze und seine Bedeutung beim Menschen. Dtsch ZeitschrNervenheilk 176: 701–729Google Scholar
  7. Büttner U, Waespe W, Miles TS (1978) Transfer characteristics of the vestibular system determined from nystagmus and neuronal activity in the alert monkey. In: Butenandt E, Hauske G (eds) Kybernetik ‘77. Oldenbourg-Verlag, pp 126–136Google Scholar
  8. Collewijn H (1980) Sensory control of optokinetic nystagmus in the rabbit. TINS 11: 277–280Google Scholar
  9. Collewijn H (1981) The oculomotor system of the rabbit and its plasticity. In: Braitenberg V (ed) Studies of brain function, Vol S. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  10. Dacey DM, Ulinski PS (1986) Optic tectum of the eastern garter snake, Thamnophis sirtalis. V: Morphology of brainstem afferents and general discussion. J Comp Neurol 245: 423–453CrossRefPubMedGoogle Scholar
  11. Dieringer N (1987) The role of compensatory eye and head movements for gaze stabilization in the unrestrained frog. Brain Res404: 33–38Google Scholar
  12. Dieringer N, Cochran SL, Precht W (1983) Differences in the central organization of gaze stabilizing reflexes between frog and turtle. J Comp Physiol 153: 495–508CrossRefGoogle Scholar
  13. Ewert J-P (1971) Single unit response of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102CrossRefGoogle Scholar
  14. Ewert J-P (1973) Lokalisation und Identifikation im visuellen System der Wirbeltiere. Fortschr Zoologie 21: 307–337Google Scholar
  15. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230:34–42Google Scholar
  16. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, London New York, pp 247–416Google Scholar
  17. Ewert J-P, Wietersheim A If (1974) Einfluß von Thalamus/Praetecttum-Defekten auf die Antworten von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte Bufo bufo (L). J Comp Physiol92: 149–160Google Scholar
  18. Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Excitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 68: 84–110CrossRefGoogle Scholar
  19. Ferrera VP, Wilson HR (1987) Direction specific masking and the analysis of motion in two dimensions. Vision Res 27: 1783–1796CrossRefPubMedGoogle Scholar
  20. Finkenstädt T, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153: 99–110CrossRefGoogle Scholar
  21. Finkenstädt T, Ebbesson SOE, Ewert J-P (1983) Projections to the midbrain tectum in Salamandra salamandra L. Cell Tiss Res 234: 39–55Google Scholar
  22. Fite KV, Montgomery N, Wojcicki C, Bengston L (1980) Visuomotor correlates of the anuran accessory optic system. Neurosci Abstr6: 839Google Scholar
  23. Fritzsch B (1980) Retinal projections in European salamandridae. Cell Tiss Res 213: 325–341Google Scholar
  24. Gioanni H, Rey J, Villalobos J, Richard D, Dalbera A (1983) Optokinetic nystagmus in the pigeon (Columba livia). II: Role of the pretectal nucleus of the accessory optic system (AOS). Exp Brain Res50: 237–247Google Scholar
  25. Gioanni H, Rey J, Villalobos J, Dalbera A (1984) Single unit activity in the nucleus of the basal optic root (nBOR) during optokinetic, vestibular and visuo-vestibular stimulations in the alert pigeon (Columba livia). Exp Brain Res57: 49–60Google Scholar
  26. Grasse KL, Cynader MS (1984) Electrophysiology of lateral and dorsal terminal nuclei of the cat accessory optic system. J Neurophysiol 51: 276–293PubMedGoogle Scholar
  27. Gruberg ER, Grasse KL (1984) Basal optic complex in the frog (Rana pipiens): a physiological and HRP study. J Neurophysiol5l: 98–110Google Scholar
  28. Hamada T (1987) Neural response to the motion of textures in the lateral suprasylvian area of cats. Behav Brain Res 25: 175–185CrossRefPubMedGoogle Scholar
  29. Hartmann R, Klinke R (1975) System analysis properties of primary vestibular fibers. Exp Brain Res Suppl 23: 85Google Scholar
  30. Heiden U an der, Roth G (1983) Cooperative neural processes in amphibian visual prey recognition. In: Basar E, Flohr H, Haken H, Mandell AJ (eds) Synergetics of the brain. Springer-Verlag, Berlin Heidelberg New York, pp 299–310CrossRefGoogle Scholar
  31. Herrick CJ (1948) The brain of the tiger salamander Ambystoma tigrinum. Univ Chicago Press, ChicagoGoogle Scholar
  32. Himstedt W, Roth G (1980) Neuronal responses in the tectum opticum of Salamandra to visual prey stimuli. J Comp Physiol 135: 251–257CrossRefGoogle Scholar
  33. Himstedt W, Heller K, Manteuffel G (1987) Neuronal responses to moving visual stimuli in different thalamic and midbrain centers of Salamandra salamandra (L). Zool Jb Physiol 91: 243–256Google Scholar
  34. Hoffmann K-P, Schoppmann A (1981) A quantitative analysis of direction-specific responses of neurons in the cat’s nucleus of the optic tract. Exp Brain Res42: 146–157Google Scholar
  35. Hoffmann K-P, Huber HP (1983) Responses to visual stimulation in single cells in the nucleus of the optic tract (NOT) during optokinetic nystagmus (OKN) in the awake cat. Neumsci Abstr9: 1048Google Scholar
  36. Holst E v, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem and Peripherie). Natuzwissenschaften 37: 464–476CrossRefGoogle Scholar
  37. Ingle DJ (1970) Visuomotor functions of the frog optic tectum. Brain BehavEvol3: 57–71 Ingle DJ (1973) Two visual systems in the frog. Science 181: 1053–1055CrossRefGoogle Scholar
  38. Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system, a multidisciplinary approach. Academic Press, New York, pp 119–140Google Scholar
  39. Ingle DJ (1980) Some effects of pretectum lesions on the frog’s detection of stationary objects. Behav Brain Res 1: 139–163CrossRefPubMedGoogle Scholar
  40. Kato I, Harada K, Hasegawa T, Igarashi T, Koike Y, Kawasaki T (1986) Role of the nucleus of the optic tract in monkeys in relation to optokinetic nystagmus. Brain Res364: 12–22Google Scholar
  41. Kopp J (1987a) Quantitative Analyse des optokinetischen and vestibulären Nystagmus bei Amphibien. PhD Thesis, Tech Univ DarmstadtGoogle Scholar
  42. Kopp J (1987b) Vestibulo-collic reflex (VCR) and optokinetic reflex (OKR) interaction in the fire salamander (Salamandra salamandra). In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme-Verlag, Stuttgart, p 154Google Scholar
  43. Kopp J,Manteuffel G (1984) Quantitative analysis of salamander horizontal head nystagmus. Brain Behav Evo! 25: 187–196Google Scholar
  44. Kostyk SK, Grobstein P (1987) Neuronal organization underlying visually elicited prey orienting in the frog. I: Effects of various unilateral lesions. Neuroscience 21: 41–55CrossRefPubMedGoogle Scholar
  45. Lara R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior a neural model. JNeurosci 2: 521–530Google Scholar
  46. Lazar G (1973) Role of the accessory optic system in the optokinetic nystagmus of the frog. Brain Behav Evol 5: 443–460Google Scholar
  47. Lr G (1983) Transection of the basal optic root in the frog abolishes vertical optokinetic head-nystagmus. Neurosci Lett 43: 7–11CrossRefGoogle Scholar
  48. Lr G, Toth P (1983) Optokinetic horizontal head nystagmus in the frog after regeneration of transected retinal fibers. Acta Biol Acad Sci Hung 34: 371–383Google Scholar
  49. Lock A, Collett T (1979) A toad’s devious approach to its prey: a study of some complex uses of depth vision. J Comp Physiol 131: 179–189CrossRefGoogle Scholar
  50. Manteuffel G (1982) The accessory optic system in the newt, Triturus cristatus: unitary response properties from the basal optic neuropil. Brain Behav Evol 21: 175–184CrossRefPubMedGoogle Scholar
  51. Manteuffel G (1984a) Electrophysiology and anatomy of direction-specific pretectal units in Salamandra salamandra. Erp Brain Res 54: 415425Google Scholar
  52. Manteuffel G (1984b) A “physiological” model for the salamander horizontal head nystagmus. Brain Behav Evo! 25: 197–205CrossRefGoogle Scholar
  53. Manteuffel G (1985) Monocular and binocular optic inputs to salamander pretectal neurons: intracellular recording and HRP labelling study. Brain Behav Evol27: 1–10Google Scholar
  54. Manteuffel G (1987) Binocular afferents to the salamander pretectum mediate rotation sensitivity of cells selective for visual background motions. Brain Res422: 381–383Google Scholar
  55. Manteuffel G, Naujoks-Manteuffel C (1987) Synergistic visual and vestibular self motion related inputs to the optic tectum of salamanders. Neuroscience Suppl 22: 737Google Scholar
  56. Manteuffel G, Petersen J, Himstedt W (1983) Optic nystagmus and nystagmogen centers in the European fire salamander (Salamandra salamandra). Zool Jb Physio187: 113–125Google Scholar
  57. Manteuffel G, Kopp J, Himstedt W (1986) Amphibian optokinetic afternystagmus: properties and comparative analysis in various species. Brain Behav Evo! 28: 186–197CrossRefGoogle Scholar
  58. Montgomery N, Fite KV, Bengston L (1981) The accessory optic system of Rana pipienn neumanatomical connections and intrinsic organization. J Comp Neuro1203: 595–612Google Scholar
  59. Montgomery N,Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens a functional analysis. Brain Behav Evoi 21: 137–150Google Scholar
  60. Montgomery N, Fite KV, Grigonis AM (1985) The pretectal nucleus (lentiformis mesencephali) of Rana pipiens. J Comp Neurol 234: 264–275CrossRefGoogle Scholar
  61. Naujoks-Manteuffel C, Manteuffel G (1986) Internuclear connections between the pretectum and the accessory optic system in Salamandra salamandra. Cell Tiss Res 243: 595–602Google Scholar
  62. Naujoks-Manteuffel C, Manteuffel G (1987) Afferents to the torus semicircularis in Salamandra salamandra (Amphibia, Urodela). Neurosci Suppl22: 773Google Scholar
  63. Naujoks-Manteuffel C, Manteuffel G (1988) The origins of descending projections to the medulla oblongata and rostral medulla spinalis in the urodele Salamandra salamandra (Amphibia). J Comp Neurol273:187–206Google Scholar
  64. Naujoks-Manteuffel C, Manteuffel G, Himstedt W (1986) Deszendierende Bahnen aus dem Di-und Mesencephalon des Feuersalamanders (Salamandra salamandra L). Verh Dtsch Zool Ges 79: 373Google Scholar
  65. Orban GA, Gulyas B, Vogels R (1987) Influence of a moving textured background on direction selectivity of cat striate neurons. JNeurophysiol57: 1792–1812Google Scholar
  66. Rettig G (1984) Neuroanatomische Untersuchungen der visuellen Projektionen bei Salamandern (Ordnung Caudata). PhD Thesis, Univ BremenGoogle Scholar
  67. Rettig G, Roth G (1986) Retinofugal projections in salamanders of the family Plethodontidae. Cell Tiss Res 243: 385–396Google Scholar
  68. Robinson DA (1976) Adaptive gain control of vestibulo-ocular reflex by the cerebellum. JNeurophysiol39: 954–969Google Scholar
  69. Roth G (1982) Beuteerkennungsmechanismen im Tectum opticum von Amphibien–eine vergleichende Untersuchung. Punkt Bio! Med 1: 90–98Google Scholar
  70. Roth G (1987) Visual behavior in salamanders. In Braitenberg V (ed) Studies of brain function, Vol 14. Springer Verlag, Berlin Heidelberg New YorkGoogle Scholar
  71. Simpson JI (1984) The accessory optic system. Ann Rev Neurosci7:13–41Google Scholar
  72. Simpson JI, Soodak RE (1978) The accessory optic system: a visual system in vestibular coordinates. Soc Neurosci Abstr4: 645Google Scholar
  73. Speri M, Manteuffel G (1987) Directional selectivities of visual afferents to the pretectal neuropil in the fire salamander. Brain Res404: 332–334Google Scholar
  74. Springer AD, Easter SS, Agranoff BW (1977) The role of the optic tectum in various visually mediated behaviors of goldfish. Brain Res 128: 393–404CrossRefPubMedGoogle Scholar
  75. Stein BE, Gaither NS (1981) Sensory representation in reptilian optic tectum: some comparisons with mammals. J Comp Neural202: 69–87Google Scholar
  76. Tauber ES, Atkin A (1968) Optomotor responses to monocular stimulation: relation to visual system organization. Science 160: 1365–1367CrossRefPubMedGoogle Scholar
  77. Taylor AM, Jeffery G, Lieberman AR (1986) Subcortical afferent and efferent connections of the superior colliculus in the rat and comparisons between albino and pigmented strains. Pap Brain Res 62: 131142Google Scholar
  78. Tsai HJ, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant “position-indicators”. J Comp Physio! 161: 295–304CrossRefGoogle Scholar
  79. Tsai HI, Ewert J-P (1988) Influence of stationary and moving background structures on the response of visual neurons in toads (Bufo bufo). Brain Behav Evo! (in press)Google Scholar
  80. Wilczynski W (1981) Afferents to the midbrain auditory center in the bullfrog, Rana catesbeiana. J Comp Neural 198: 421–433CrossRefGoogle Scholar
  81. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neural 173: 219–230CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Gerhard Manteuffel
    • 1
  1. 1.Fachbereich BiologieUniversität BremenBremenFR Germany

Personalised recommendations