Advertisement

The T5 Base Modulator Hypothesis: A Dynamic Model of T5 Neuron Function in Toads

  • Bill Betts

Abstract

Prey-catching behavior in toads exhibits flexibility. Toads can be conditioned to regard objects which normally elicit escape behavior as prey. The range of acceptable sizes for prey varies with motivation. In spring, prey recognition is “exchanged” for female recognition introducing mating behavior. To account for this behavioral flexibility within a single dynamic model, T5 neuron function is modeled as a T5 base modulator consisting of two components. The first, called the T5 base, consists of a T5 unit and all of the influences upon it except for thalamic pretectal (TP) inhibition which constitutes the second component. The T5 base modulator is a TP modulated tectal structure in which the T5 base provides a basis for T5 neuron function while TP inhibition modulates that basis to achieve the desired characteristics (subclasses T5.1, T5.2, or T5.3) for an individual T5 neuron at a given time. A T5 neuron thus has the potential, e.g., to be either a prey or mate feature analyzer. In the absence of TP modulation, the T5 base is optimized for recognizing objects that are among the least prey-like objects that T5 neurons analyze. Three mechanisms for achieving this are explored. The T5 base modulator hypothesis does not argue against the division of T5 neurons into subclasses, but instead suggests that these subclasses can be regarded as (more or less) stable states of a modulated system capable of adaptability and changeability.

Keywords

Firing Rate Receptive Field Optic Tectum Directional Sensitivity Bufo Bufo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. An der Heiden U, Roth G (1983) A mathematical network model for retino-tectal prey recognition in amphibians. In: Lara R, Arbib MA (eds) Proc of the 2nd workshop on visuomotor coordination in frog and toad: models and experiments. Univ of Massachusetts, COINS Technical Report 83–19, Amherst, MAGoogle Scholar
  2. Andrew AM (1955) Action potentials from the frog colliculus. JPhysiol (Lond)130: 25Google Scholar
  3. Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: Intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246: 238–253PubMedCrossRefGoogle Scholar
  4. Backstrom A-C, Hemila S, Reuter T (1978) Directional selectivity and colour coding in the frog retina. Med Bio! 56: 72–83Google Scholar
  5. Barlow HB (1953) Summation and inhibition in the frog’s retina. JPhysio! (Lond)119: 69–88Google Scholar
  6. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in rabbit’s retina. J Physiol 178: 477–504PubMedGoogle Scholar
  7. Betts B (1988) The toad optic tectum as a recurrent on-center off-surround neural net with quenching threshold. In: Proc of IEEE International Conference on Neural Networks II, pp 47–54Google Scholar
  8. Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b bufo L, Ahura, Amphibia): changes in response to visual objects and effects of auditory stimuli. BehavProcess3: 125–136Google Scholar
  9. Burghagen H (1979) Der Einfluß von figuralen, visuellen Mustern auf das Beutefangverhalten veischiedenerAnuren. PhD Thesis, Univ of KasselGoogle Scholar
  10. Carey RG (1975) A quantitative analysis of the distribution of the retinal elements in frogs and toads with special emphasis on the areac retinas. Master’s Thesis, Univ of Massachusetts, Amherst, MAGoogle Scholar
  11. Cervantes-Pérez F, Lara R, Arbib M (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibians. JTheorBiol113: 117–152Google Scholar
  12. Ebbesson SOE (1987) Prey-catching in toads: an exceptional neuroethological model. A commentary. Behav Brain Sci 10: 375–376CrossRefGoogle Scholar
  13. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol6l: 41–70Google Scholar
  14. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102CrossRefGoogle Scholar
  15. Ewert J-P (1974) The neural basis of visually guided behavior. In: Held R (ed) Recent Progress in Perception. WH Freeman, San Francisco, pp 96–104Google Scholar
  16. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In:Google Scholar
  17. Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 247–416Google Scholar
  18. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405Google Scholar
  19. Ewert J-P, Seelen W v (1974) Neurobiologie und Systemtheorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14: 167–183PubMedCrossRefGoogle Scholar
  20. Ewert J-P, Wietersheim A v (1974) Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte Bufo bufo (L). J Comp Physiol92: 149–160Google Scholar
  21. Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Excitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 68: 84–110CrossRefGoogle Scholar
  22. Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/praetectum/tectum: retinale topographie und physiologische Interaktionen bei der Kröte Bufo bufo L. J Comp Physiol92: 343–356Google Scholar
  23. Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey feature detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol 126: 43. 47Google Scholar
  24. Ewert J-P, Borchers H-W, Wietersheim A v (1979a) Directional sensitivity, invariance and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L). J Comp Physiol132:191–201Google Scholar
  25. Ewert J-P, Krug H, Schönitz G (1979b) Activity of retinal class R3 ganglion cells in the toad Bufo bufo (L) in response to moving configurational stimuli: influence of the movement direction. J Comp Physiol 129: 211–215CrossRefGoogle Scholar
  26. Ewert J-P, Burghagen H, Schürg-Pffeifer E (1983) Neuroethological analysis of the innate releasing mechanisms for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum, New York, pp 413–475CrossRefGoogle Scholar
  27. Griisser O-J, Griisser-Cornehls U (1968) Neumphysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59: 1–24CrossRefGoogle Scholar
  28. Grösser O-J, Grösser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinés R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin, Heidelberg, New York, pp 298–385Google Scholar
  29. Grüsser-Cornehls U, Langeveld S (1985) Velocity sensitivity and directional selectivity of frog retinal ganglion cells depend on chromaticity of moving stimuli. Brain Behav Evo! 27: 165–185CrossRefGoogle Scholar
  30. Grüsser-Cornehls U, Saunders RMcD (1981) Response of frog retina ganglion cells to monochromatic spots under photopic conditions. Vision Res21: 1617–1620Google Scholar
  31. Heatwole H, Heatwole A (1968) Motivational aspects of feeding behavior in toads. Copeia 4: 692–698CrossRefGoogle Scholar
  32. Heusser H (1960) Instinkterscheinungen an Kröten unter besonderer Berücksichtigung des Fortpflanzungsinstinktes der Erdkröte (Bufo bufo L). Z Tierpsycho! 17: 67–81Google Scholar
  33. Kondrashev SL (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akad Nayk Zool J55: 1576–1579Google Scholar
  34. Kondrashev SL (1987) Neuroethology and color vision in amphibians. A commentary. Behav Brain Sci 10: 385CrossRefGoogle Scholar
  35. Kuljis RO, Karten FU (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neuro/ 212: 188–201CrossRefGoogle Scholar
  36. Lara R, Arbib MA (1982) A neural model of interaction between pretectum and tectum in prey selection. Cognition and Brain Theory5(2): 149–171Google Scholar
  37. Lam R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biol Cybern 51: 223–237CrossRefGoogle Scholar
  38. Lam R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior a neural model. JNeurosci 2 (4): 521–530Google Scholar
  39. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng47: 1940–1951Google Scholar
  40. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog. J Gen Physiol 43: 129–175PubMedCrossRefGoogle Scholar
  41. Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol 159: 721–739CrossRefGoogle Scholar
  42. Poggio T, Koch C (1987) Synapses that compute motion. Sci Amer256(5): 46–52Google Scholar
  43. Reiner A, Karten HJ, Brecha NC (1982) Enkephalin-mediated basal ganglia influences over the optic tectum: immuno-histochemistry of the tectum and the lateral spiriform nucleus in pigeon. J Comp Neurol 208: 37–53Google Scholar
  44. Reuter T, Virtanen K (1976) Color discrimination mechanisms in the retina of the toad (Bufo bufo). J Comp Physio! 109: 337–343CrossRefGoogle Scholar
  45. Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaiia. J Comp Physio! 141: 139–158CrossRefGoogle Scholar
  46. Stevens RJ (1973) A cholinergic inhibitory system in the frog optic tectum: its role in visual electrical responses and feeding behavior. Brain Res49: 309–321Google Scholar
  47. Székely G, L~azdr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llin 1s R, Precht W (eds) Frog neurobiology, Springer-Verlag, Berlin Heidelberg New York, pp 407–434Google Scholar
  48. Traud R (1983) Einfluß von visuellen Reizmustern auf die juvenile Erdkröte (Bufo bufo L). PhD Thesis, Univ of KasselGoogle Scholar
  49. Tsai HJ, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant ‘position indicators’. J Comp Physi of 161: 295–304CrossRefGoogle Scholar
  50. Wells KD (1977) The social behavior of anuran amphibians. Anim Behav25: 666–693Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Bill Betts
    • 1
  1. 1.Program in Neural, Informational, and Behavioral SciencesUniversity of Southern CaliforniaLos AngelesUSA

Personalised recommendations