Retina and Optic Tectum in Amphibians: A Mathematical Model and Simulation Studies

  • Uwe an der Heiden
  • Gerhard Roth


The processing of visual information within the retino-tectal system of amphibians is decomposed into five major operational stages, three of them taking place in the retina and two in the optic tectum. The stages in the retina involve (i) a spatially local high-pass filtering in connection to the perception of moving objects, (ii) separation of the receptor activity into on- and off-channels regarding the distinction of objects moving against light or dark backgrounds, (iii) spatial integration via near excitation and far-reaching inhibition. Variation of the spatial range of excitation and inhibition allows to account for typical activities observed in a variety of classes of retinal ganglion cells. A mathematical description of the operations in the optic tectum include (a) spatial summation of retinal output (mainly of class R2 and class R3 retinal ganglion cells), and (b) lateral inhibition between tectal cells. In the computer simulation, first the output of the mathematical retina model is computed which, then, is used as the input to the tectum model. The full spatiotemporal dynamics is taken into account. The simulations show that different combinations of strength of lateral inhibition on the one side and the response properties of the retinal ganglion cells on the other side determine the response properties of tectal cell types T5.1, T5.2, and T5.3 involved in object recognition.


Receptive Field Edge Length Lateral Inhibition Retinal Ganglion Cell Optic Tectum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. An der Heiden U (1980) Analysis of neural networks. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  2. An der Heiden U, Roth G (1983) Cooperative neural processes in amphibian visual prey recognition. In: Basar E, Flohr H, Haken H, Mandell AI (eds) Synergetics of the brain. Springer-Verlag, Berlin Heidelberg New York TokyoGoogle Scholar
  3. An der Heiden U, Roth G (1987) Mathematical model and simulation of retina and tectum opticum of lower vertebrates. Acta Biotheoretica 36: 179–212CrossRefGoogle Scholar
  4. Cervantes-Pérez F, Lara R, Arbib MA (1985) A neural model of interactions subserving prey-predator discrimination and size preference in anuran amphibia. J Theor Biol 113: 117–152CrossRefPubMedGoogle Scholar
  5. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute- und Fluchtverhalten der Erdkröte (Bufo bufo L) Z Vergl Physiol 61: 41–70Google Scholar
  6. Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L). PflúgersArch 308: 225–243Google Scholar
  7. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230: 34–42CrossRefPubMedGoogle Scholar
  8. Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 141–202Google Scholar
  9. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416Google Scholar
  10. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405CrossRefGoogle Scholar
  11. Ewert J-P, Hock FJ (1972) Movement sensitive neurons in the toad’s retina. Exp Brain Res 16: 41–59CrossRefPubMedGoogle Scholar
  12. Ewert J-P, Seelen W v (1974) Neurobiologie und Systemtheorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14: 167–183CrossRefPubMedGoogle Scholar
  13. Ewert J-P, Wietersheim A v (1974a) Musterauswertung durch Tectum- und Thalamus/PraetectumNeurone im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148CrossRefGoogle Scholar
  14. Ewert J-P, Wietersheim A v (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160CrossRefGoogle Scholar
  15. Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey feature detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol 126: 43–47CrossRefGoogle Scholar
  16. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475CrossRefGoogle Scholar
  17. Finkenstädt T, Ewert J-P (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. J Comp Physiol 153: 85–98CrossRefGoogle Scholar
  18. Finkenstädt T, Ewert J-P (1983b) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153: 99–110CrossRefGoogle Scholar
  19. Grasser O-J, Finkelstein D (1967) Analyse eines auf “Bewegungswahrnehmung” spezialisierten Neuronensystems in der Froschnetzhaut. In: Kroebel W (ed) Fortschritte der Kybernetik Oldenbourg-Verlag, München, pp 833–96Google Scholar
  20. Grasser O-J, Grösser-Cornehls U (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59: 1–24CrossRefGoogle Scholar
  21. Grasser O-J, Grasser-Cornehls U (1970) Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verh Dtsch Zoo! Ges 64: 201–218Google Scholar
  22. Grasser O-J, Grasser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385CrossRefGoogle Scholar
  23. Grüsser O-J, Grasser-Cornehls U, Licker MD (1968) Further studies on the velocity function of movement-detecting class-2 neurons in the frog retina. Vision Res 8: 1173–1185CrossRefPubMedGoogle Scholar
  24. Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 211–245Google Scholar
  25. Grasser-Cornehls U, Himstedt W (1973) Responses of retinal and tectal neurons of the salamander (Salamandra salamandra L.) to moving visual stimuli. Brain Behav Evol 7: 145–168CrossRefGoogle Scholar
  26. Grasser-Cornehls U, Himstedt W (1976) The urodele visual system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, London New York, pp 203–266Google Scholar
  27. Herrick CJ (1948) The brain of the tiger salamanderAmbystoma tigrinum. Univ Chicago PressGoogle Scholar
  28. Himstedt W, Roth G (1980) Neuronal responses in the tectum opticum of Salamandra to visual prey stimuli. J Comp Physio 1135: 251–257CrossRefGoogle Scholar
  29. Ingle DJ (1973) Two visual systems in the frog. Science 181: 1053–1055CrossRefPubMedGoogle Scholar
  30. Ingle DJ (1980) Some effects of pretectum lesions on the frog’s detection of stationary objects. Behav Brain Res 1: 139–163CrossRefPubMedGoogle Scholar
  31. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226CrossRefGoogle Scholar
  32. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Bio! Cybem 51: 223–237CrossRefGoogle Scholar
  33. Lara R, Cervantes F, Arbib M (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 371–393CrossRefGoogle Scholar
  34. Levine MW, Shefner IM (1977) Variability in ganglion cell firing patterns: implications for separate “on” and “off’ processes. Vision Res 17: 765–776CrossRefPubMedGoogle Scholar
  35. Manteuffel G (1985) Monocular and binocular optic inputs to salamander pretectal neurons: an intracellular recording and HRP-labelling study. Brain BehavEvol 27: 1–10CrossRefPubMedGoogle Scholar
  36. Pfeiffer E (1975) Musterauswertung durch retinale Ganglienzellen beim Frosch (Rana esculenta L). Diploma Thesis, Tech Univ DarmstadtGoogle Scholar
  37. Roth G (1978) The role of stimulus movement patterns in the prey catching behavior of Hydromantes genei (Amphibia, Plethodontidae). J Comp Physiol 123: 261–2MCrossRefGoogle Scholar
  38. Roth G (1982a) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Erp Brain Res 45: 386–392CrossRefGoogle Scholar
  39. Roth G (1982b) Beuteerkennungsmechanismen im Tectum opticum von Amphibien–eine vergleichende Untersuchung. Funkt Bio! Med 1: 90–98Google Scholar
  40. Roth G (1986) Neural mechanisms of prey recognition: an example in amphibians. In: Feder ME, Lauder GV (eds) Predator-prey relationships. Univ Chicago Press, Chicago London, pp 42–68Google Scholar
  41. Roth G (1987) Visual behavior in salamanders. Springer-Verlag, Berlin Heidelberg New York TokyoCrossRefGoogle Scholar
  42. Roth G, Jordan M (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L). Exp Brain Res 45: 393–398CrossRefPubMedGoogle Scholar
  43. Schürg-Pfeiffer E, Ewert J-P (1981) Investigations of neurons involved in the analysis of gestalt prey features in the frog Rana temporaria. J Comp Physiol 141: 139–152CrossRefGoogle Scholar
  44. Székely G, Lazar G (1976) Cellular and synaptic architeture of the optic tectum. In: Llinds R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar
  45. Tsai H-J, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant “position indicators.” J Comp Physiol 161: 295–304Google Scholar
  46. Varjú D (1978) Excitation and inhibitory processes giving rise to the delayed response in the retinal ganglion cell of the frog. In: Heim R, Palm G (eds) Theoretical approaches to complex systems. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Uwe an der Heiden
    • 1
    • 2
  • Gerhard Roth
    • 1
    • 2
  1. 1.Fakultät für NaturwissenschaftenUniversität Witten/HerdeckeWittenFR Germany
  2. 2.Fachbereich 2/BiologieUniversität BremenBremen 33FR Germany

Personalised recommendations