Skip to main content

Toward an Identification of Neurotransmitters in the Frog’s Optic Tectum

  • Chapter
Visuomotor Coordination
  • 127 Accesses

Abstract

The amphibian optic tectum offers an excellent model to study neurotransmission. Using partially isolated nerve endings and slices from frog’s optic tectum, various neurochemical criteria (Na+-dependent transmitter uptake and Ca2+-dependent release, respectively) have been applied to identify neurotransmitters. We looked for the amino acids glutamic acid, aspartic acid, gamma-aminobutyric acid (GABA), and glycine, and for the amines dopamine, norepinephrine, and 5-hydroxytryptamine (serotonin).

This paper was completed by the late Elena Sandoval and her co-workers in 1984. We publish it here in a copy-edited form. The Editors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Baker PF, Meves H, Ridgway EB (1973) Calcium entry in response to maintained depolarization of squid axons. J Physiol 231: 527–548

    PubMed  CAS  Google Scholar 

  • Bieger D, Neuman RS (1984) Selective accumulation of hydroxytryptamines by frog tectal neurons. Neurosci 12: 1167–1177

    Article  CAS  Google Scholar 

  • Bondy SC, Harrington ME (1979) Calcium-dependent release of putative neurotransmitters in the chick visual system. Neurosci 4: 1521–1527

    Article  CAS  Google Scholar 

  • Bondy SC, Purdy JL (1977) Putative neurotransmitters of the avian visual pathway. Brain Res 119: 417–126

    Article  PubMed  CAS  Google Scholar 

  • Bradford HF, Jones DG, Ward HK, Booher J (1975) Biochemical and morphological studies of the short and long term survival of isolated nerve endings. Brain Res 90: 245–259

    Article  PubMed  CAS  Google Scholar 

  • Cotman CW, Haycock JW, White WF (1976) Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release. JPhysiol254: 475–505

    Google Scholar 

  • Cuenod M, Henke H (1978) Neurotransmitters in the avian visual system. In: Fonnum F (ed) Amino acids as chemical transmitters Plenum Press, New York, pp 221–239

    Google Scholar 

  • Chujo T, Yamada Y, Yamamoto C (1975) Sensitivity of Purkinje cell dendrites to glutamic acid. E p Brain Res 23: 293–300

    CAS  Google Scholar 

  • Davidoff RA, Adair R (1976) GABA and glycine transport in frog CNS: high-affinity uptake and potassium-evoked release in vitro. Brain Res 118: 40–415

    Article  Google Scholar 

  • Davidson N (1976) Neurotransmitter amino acids. Academic Press, New York

    Google Scholar 

  • Douglas WW (1968) Stimulus-secretion coupling: the concepts and clues from chromaffin and other cells. J Pharmacol 34: 451–474

    CAS  Google Scholar 

  • De Robertis E, Pellegrino de Iraldi A, Rodriguez de Lores Arnaiz G, Salganicoff L (1962) Cholinergic and non-cholinergic nerve endings in rat brain. I: Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. JNeurochem 9: 23–35

    Google Scholar 

  • Enna SJ, Snyder SH (1975) Properties of gamma-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fraction. Brain Res 100: 81–97

    Article  PubMed  CAS  Google Scholar 

  • Ewert J-P (1976) The visual system of the toad. Behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 141–202

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behavior in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416

    Google Scholar 

  • Ewert J-P, Burghagen H, Schilrg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475

    Chapter  Google Scholar 

  • Fagg GE, Lane JD (1979) The uptake and release of putative amino acid neurotransmitters. Neurosci 4: 1015–1036

    Article  CAS  Google Scholar 

  • Fonnum F, Henke H (1982) The topographical distribution of alanine, aspartate, aminobutyric acid, glutamate, glutamine and glycine in the pigeon optic tectum and the effect of retinal ablation. J Neurochem 38: 1130–1134

    Article  PubMed  CAS  Google Scholar 

  • Fonnum F, Storm-Mathisen J, Walberg F (1970) Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res 20: 259–275

    Article  PubMed  CAS  Google Scholar 

  • Foster AC, Roberts PJ (1980) Endogenous amino acid release from rat cerebellum in vitro. JNeurochem 35: 517–519

    Article  CAS  Google Scholar 

  • Freeman JA, Norden JJ (1984) Neurotransmitters in the optic tectum of non mammalians. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 469–546

    Google Scholar 

  • Fricke U (1975) Tritosol: a new scintillation cocktail based on triton x 100. Analyt Biochem 63: 555–558

    Article  PubMed  CAS  Google Scholar 

  • Griisser O-J, Griisser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385

    Chapter  Google Scholar 

  • Harvey JA, Schofield CN, Graham LT, Aprison MH (1975) Putative transmitters in deprivated olfactory cortex. J Neurochem 24: 445–449

    Article  PubMed  CAS  Google Scholar 

  • Henke H, Cuenod M (1978) Uptake of 1-alanine, glycine and 1-serine in the pigeon central nervous system. Brain Res 152: 105–119

    Article  PubMed  CAS  Google Scholar 

  • Henke H, Schenker TM, Cuenod M (1976) Uptake of neurotransmitter candidates by pigeon tectum. J Neurochem 26: 125–130

    PubMed  CAS  Google Scholar 

  • Hertz L (1979) Functional interactions between neurons and astrocytes. I: Turnover and metabolism of putative amino acid neurotransmitters. FrogNeurobiol 13: 277–323

    CAS  Google Scholar 

  • Hughey PR, Rankin BB, Curthoys NP (1980) Accute acidosis and renal arteriovenous differences of glutamine in normal and adrenalectomized cats. Amer Physiol Soc 238: 199–204

    Google Scholar 

  • Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140

    Google Scholar 

  • Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR

    Google Scholar 

  • Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226

    Google Scholar 

  • Israel M, Dunant Y, Manarauche R (1979) The present status of the vesicular hypothesis. Prog Neurobiol 13: 571–591

    Article  Google Scholar 

  • Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic transmission. BrJPharmacol Chem 41: 571–591

    CAS  Google Scholar 

  • Johnson JL (1972) Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Res 37: 1–7

    Article  PubMed  CAS  Google Scholar 

  • Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201

    Article  PubMed  CAS  Google Scholar 

  • Lizgr G (1980) Long term persistance after eye-removal of unmyelinated fibres in the frog visual pathway. Brain Res 199: 219–224

    Article  Google Scholar 

  • Lefort B, Henke H, Cuenod M (1978) Glycine specific 3H-strychnine binding in the pigeon CNS. J Neurochem 30: 1897–1291

    Article  Google Scholar 

  • Levi G, Gordon RD, Gallo V, Wilkin GP, Balaz R (1982) Putative acidic amino acid transmitters in the cerebellum. Brain Res 239: 425–445

    Article  PubMed  CAS  Google Scholar 

  • Lowly OH, Rosebrough NJ, Fair AL, Randall RJ (1951) Protein measurement with the folin phenol agent. J Biol Chem 193: 265–275

    Google Scholar 

  • Matsumoto DE, Scalia F (1981) Long-term survival of centrally projecting axons in the optic nerve of the toad (Bufo bufo). JAnat 92: 21–27

    Google Scholar 

  • Miledi R (1973) Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc (B)183: 421–425

    Google Scholar 

  • Milson JA, Mitchell JF (1977) The action of amino acids on evoked responses in the frog optic tectum. BrJ Pharmaco 159: 484

    Google Scholar 

  • Müller WE, Snyder SH (1978) Glycine high-affinity uptake and strychnine binding associated with glycine receptors in frog central nervous system. Brain Res 143: 487–498

    Article  PubMed  Google Scholar 

  • Nadler JV, Vaca KW, White WF, Lynch GS, Cotman CW (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature (Loud) 260: 538–540

    Google Scholar 

  • Orrego F (1979) Criteria for the identification of central neurotransmitters and their application to studies with some nerve tissue preparations in vitro. Neurosci 4: 1037–1057

    Article  CAS  Google Scholar 

  • Oswald RE, Freeman JA (1977) Amphibian optic nerve transmitters: Ach, yes; GABA and glutamate, no. Soc Neurosci Abstr 3: 411

    Google Scholar 

  • P6rez de la Mora M, Possani LD, Tapia R, Teran L, Palacios R, Fuxe K, Horkfelt T, Ljungdahl A (1981) Demonstration of central gamma-aminobutyric containing nerve terminals by means of antibodies against glutamate decarboxylase. Neurosci 6: 875–895

    Article  Google Scholar 

  • Raitieri M, Federico R, Coletti A, Levi G (1975) Release and exchange studies relating to the synaptosomal uptake of GABA. JNeurochem 24: 1243–1250

    Article  Google Scholar 

  • Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. TINS 7: 320–325

    Google Scholar 

  • Reubi JC, Cuenod M (1976) Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus. Brain Res 112: 347–361

    Article  PubMed  CAS  Google Scholar 

  • Roberts PJ, Yates RA (1976) Tectal deafferentation in the frog: selective loss of L-glutamate and gammaaminobutyric acid. Neurosci 1: 371–374

    Article  CAS  Google Scholar 

  • Rubin RP (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Res 22: 389–428

    CAS  Google Scholar 

  • Sandoval ME, Cotman CW (1978) Evaluation of glutamate as neurotransmitter of cerebellar parallel fibers. Neurosci 3: 199–206

    Article  CAS  Google Scholar 

  • Sandoval ME, Lara R (1984) Caracteristicas de la transmision sinaptica quimica. In: Pasantes-Morales H, Arechiga H (eds) Aminoacidos y peptidos neuroactivos. Universidad National Autonoma de Mexico, Mexico

    Google Scholar 

  • Sandoval ME, Horch P, Cotman CW (1978) Evaluation of glutamate as a hippocampal neurotransmitter. glutamate uptake and release from synaptosomes. Brain Res 142: 285–299

    Article  PubMed  CAS  Google Scholar 

  • Sandoval ME, Torner CA, Medrano L (1984) High-affinity uptake and Ca-dependent release of glutamic acid in the developing cerebellum. Neurosci 11: 867–875

    Article  CAS  Google Scholar 

  • Schwartz EA (1982) Calcium-independent release of GABA from isolated horizontal cells of toad retina. J Physiol 323: 211–227

    PubMed  CAS  Google Scholar 

  • Shefner SA, Levy RA (1981) The contribution of increases in extracellular potassium to primary afferent depolarization in the bullfrog spinal cord. Brain Res 205: 321–335

    Article  PubMed  CAS  Google Scholar 

  • Simon JR, Martin DL, Kroll M (1974) Sodium-dependent efflux and exchange of GABA in synaptosomes. JNeurochem 23: 981–991

    Article  CAS  Google Scholar 

  • Snyder SH, Kuhar MJ, Green AI, Coyle JT, Shoskan EG (1970) Uptake and subcellular localization of neurotransmitters in the brain. fat Rev Neurobio 113: 127–158

    Article  Google Scholar 

  • Snyder SH (1975) The glycine synaptic receptor in the mammalian central nervous system. BrJPharmacol 53: 473–484

    CAS  Google Scholar 

  • Storm-Mathisen J (1976) Distribution of the components of the GABA system in neuronal tissue: cerebellum and hippocampus-effects of axotomy. In: Roberts E, Chase TU, Tower DB (eds) GAGA in nervous system function. Raven Press, New York, pp 149–168

    Google Scholar 

  • Sykova E, Vyklicky L (1977) Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg concentrations. Neurosci Lett 4: 161–165

    Article  PubMed  CAS  Google Scholar 

  • Villani L, Contestabile A, Niso A (1982) Electron microscopic demonstation of neurons and synaptic terminals selectively accumulating 3H-GABA in goldfish optic tectum. Bas Appl Histochem 26: 185–191

    CAS  Google Scholar 

  • Werman R (1966) Criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18: 745–766

    Article  PubMed  CAS  Google Scholar 

  • Whittaker UP (1969) The synaptosome. In: Lajtha A (ed) Handbook of neurochemistry Vol H. Plenum Press, New York, pp 327–364

    Google Scholar 

  • Woodward DJ, Hoffer RJ, Siggins GR, Oliver AP (1976) Inhibition of Purkinje cells in the frog cerebellum. II. Evidence for GABA as the inhibitory transmitter. Brain Res 33: 91–100

    Article  Google Scholar 

  • Yamamoto C, Matsui S (1976) Effect of stimulation of an excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro. JNeurochem 26: 487–491

    Article  CAS  Google Scholar 

  • Yates RA, Roberts PJ (1974) Effects of enucleation and intraocular colchicine on amino acids of frog optic tectum. JNeurochem 233: 891–894

    Article  Google Scholar 

  • Yates RA, Taberner PV (1975) Glutamic acid, GABA and their metabolizing enzymes in the frog central nervous system. Brain Res 84: 397–404

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Sandoval, M.E., Massieu, L., Araiza, P., Fernandez, J. (1989). Toward an Identification of Neurotransmitters in the Frog’s Optic Tectum. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics