Advertisement

Toward an Identification of Neurotransmitters in the Frog’s Optic Tectum

  • M. E. Sandoval
  • L. Massieu
  • P. Araiza
  • J. Fernandez

Abstract

The amphibian optic tectum offers an excellent model to study neurotransmission. Using partially isolated nerve endings and slices from frog’s optic tectum, various neurochemical criteria (Na+-dependent transmitter uptake and Ca2+-dependent release, respectively) have been applied to identify neurotransmitters. We looked for the amino acids glutamic acid, aspartic acid, gamma-aminobutyric acid (GABA), and glycine, and for the amines dopamine, norepinephrine, and 5-hydroxytryptamine (serotonin).

Keywords

Glutamic Acid Nerve Ending Optic Tectum Putative Neurotransmitter Unilateral Enucleation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baker PF, Meves H, Ridgway EB (1973) Calcium entry in response to maintained depolarization of squid axons. J Physiol 231: 527–548PubMedGoogle Scholar
  2. Bieger D, Neuman RS (1984) Selective accumulation of hydroxytryptamines by frog tectal neurons. Neurosci 12: 1167–1177CrossRefGoogle Scholar
  3. Bondy SC, Harrington ME (1979) Calcium-dependent release of putative neurotransmitters in the chick visual system. Neurosci 4: 1521–1527CrossRefGoogle Scholar
  4. Bondy SC, Purdy JL (1977) Putative neurotransmitters of the avian visual pathway. Brain Res 119: 417–126PubMedCrossRefGoogle Scholar
  5. Bradford HF, Jones DG, Ward HK, Booher J (1975) Biochemical and morphological studies of the short and long term survival of isolated nerve endings. Brain Res 90: 245–259PubMedCrossRefGoogle Scholar
  6. Cotman CW, Haycock JW, White WF (1976) Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release. JPhysiol254: 475–505Google Scholar
  7. Cuenod M, Henke H (1978) Neurotransmitters in the avian visual system. In: Fonnum F (ed) Amino acids as chemical transmitters Plenum Press, New York, pp 221–239Google Scholar
  8. Chujo T, Yamada Y, Yamamoto C (1975) Sensitivity of Purkinje cell dendrites to glutamic acid. E p Brain Res 23: 293–300Google Scholar
  9. Davidoff RA, Adair R (1976) GABA and glycine transport in frog CNS: high-affinity uptake and potassium-evoked release in vitro. Brain Res 118: 40–415CrossRefGoogle Scholar
  10. Davidson N (1976) Neurotransmitter amino acids. Academic Press, New YorkGoogle Scholar
  11. Douglas WW (1968) Stimulus-secretion coupling: the concepts and clues from chromaffin and other cells. J Pharmacol 34: 451–474Google Scholar
  12. De Robertis E, Pellegrino de Iraldi A, Rodriguez de Lores Arnaiz G, Salganicoff L (1962) Cholinergic and non-cholinergic nerve endings in rat brain. I: Isolation and subcellular distribution of acetylcholine and acetylcholinesterase. JNeurochem 9: 23–35Google Scholar
  13. Enna SJ, Snyder SH (1975) Properties of gamma-aminobutyric acid (GABA) receptor binding in rat brain synaptic membrane fraction. Brain Res 100: 81–97PubMedCrossRefGoogle Scholar
  14. Ewert J-P (1976) The visual system of the toad. Behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 141–202Google Scholar
  15. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behavior in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–416Google Scholar
  16. Ewert J-P, Burghagen H, Schilrg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475CrossRefGoogle Scholar
  17. Fagg GE, Lane JD (1979) The uptake and release of putative amino acid neurotransmitters. Neurosci 4: 1015–1036CrossRefGoogle Scholar
  18. Fonnum F, Henke H (1982) The topographical distribution of alanine, aspartate, aminobutyric acid, glutamate, glutamine and glycine in the pigeon optic tectum and the effect of retinal ablation. J Neurochem 38: 1130–1134PubMedCrossRefGoogle Scholar
  19. Fonnum F, Storm-Mathisen J, Walberg F (1970) Glutamate decarboxylase in inhibitory neurons. A study of the enzyme in Purkinje cell axons and boutons in the cat. Brain Res 20: 259–275PubMedCrossRefGoogle Scholar
  20. Foster AC, Roberts PJ (1980) Endogenous amino acid release from rat cerebellum in vitro. JNeurochem 35: 517–519CrossRefGoogle Scholar
  21. Freeman JA, Norden JJ (1984) Neurotransmitters in the optic tectum of non mammalians. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 469–546Google Scholar
  22. Fricke U (1975) Tritosol: a new scintillation cocktail based on triton x 100. Analyt Biochem 63: 555–558PubMedCrossRefGoogle Scholar
  23. Griisser O-J, Griisser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385CrossRefGoogle Scholar
  24. Harvey JA, Schofield CN, Graham LT, Aprison MH (1975) Putative transmitters in deprivated olfactory cortex. J Neurochem 24: 445–449PubMedCrossRefGoogle Scholar
  25. Henke H, Cuenod M (1978) Uptake of 1-alanine, glycine and 1-serine in the pigeon central nervous system. Brain Res 152: 105–119PubMedCrossRefGoogle Scholar
  26. Henke H, Schenker TM, Cuenod M (1976) Uptake of neurotransmitter candidates by pigeon tectum. J Neurochem 26: 125–130PubMedGoogle Scholar
  27. Hertz L (1979) Functional interactions between neurons and astrocytes. I: Turnover and metabolism of putative amino acid neurotransmitters. FrogNeurobiol 13: 277–323Google Scholar
  28. Hughey PR, Rankin BB, Curthoys NP (1980) Accute acidosis and renal arteriovenous differences of glutamine in normal and adrenalectomized cats. Amer Physiol Soc 238: 199–204Google Scholar
  29. Ingle DJ (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140Google Scholar
  30. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RRGoogle Scholar
  31. Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 177–226Google Scholar
  32. Israel M, Dunant Y, Manarauche R (1979) The present status of the vesicular hypothesis. Prog Neurobiol 13: 571–591CrossRefGoogle Scholar
  33. Iversen LL (1971) Role of transmitter uptake mechanisms in synaptic transmission. BrJPharmacol Chem 41: 571–591Google Scholar
  34. Johnson JL (1972) Glutamic acid as a synaptic transmitter in the nervous system. A review. Brain Res 37: 1–7PubMedCrossRefGoogle Scholar
  35. Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201PubMedCrossRefGoogle Scholar
  36. Lizgr G (1980) Long term persistance after eye-removal of unmyelinated fibres in the frog visual pathway. Brain Res 199: 219–224CrossRefGoogle Scholar
  37. Lefort B, Henke H, Cuenod M (1978) Glycine specific 3H-strychnine binding in the pigeon CNS. J Neurochem 30: 1897–1291CrossRefGoogle Scholar
  38. Levi G, Gordon RD, Gallo V, Wilkin GP, Balaz R (1982) Putative acidic amino acid transmitters in the cerebellum. Brain Res 239: 425–445PubMedCrossRefGoogle Scholar
  39. Lowly OH, Rosebrough NJ, Fair AL, Randall RJ (1951) Protein measurement with the folin phenol agent. J Biol Chem 193: 265–275Google Scholar
  40. Matsumoto DE, Scalia F (1981) Long-term survival of centrally projecting axons in the optic nerve of the toad (Bufo bufo). JAnat 92: 21–27Google Scholar
  41. Miledi R (1973) Transmitter release induced by injection of calcium ions into nerve terminals. Proc R Soc (B)183: 421–425Google Scholar
  42. Milson JA, Mitchell JF (1977) The action of amino acids on evoked responses in the frog optic tectum. BrJ Pharmaco 159: 484Google Scholar
  43. Müller WE, Snyder SH (1978) Glycine high-affinity uptake and strychnine binding associated with glycine receptors in frog central nervous system. Brain Res 143: 487–498PubMedCrossRefGoogle Scholar
  44. Nadler JV, Vaca KW, White WF, Lynch GS, Cotman CW (1976) Aspartate and glutamate as possible transmitters of excitatory hippocampal afferents. Nature (Loud) 260: 538–540Google Scholar
  45. Orrego F (1979) Criteria for the identification of central neurotransmitters and their application to studies with some nerve tissue preparations in vitro. Neurosci 4: 1037–1057CrossRefGoogle Scholar
  46. Oswald RE, Freeman JA (1977) Amphibian optic nerve transmitters: Ach, yes; GABA and glutamate, no. Soc Neurosci Abstr 3: 411Google Scholar
  47. P6rez de la Mora M, Possani LD, Tapia R, Teran L, Palacios R, Fuxe K, Horkfelt T, Ljungdahl A (1981) Demonstration of central gamma-aminobutyric containing nerve terminals by means of antibodies against glutamate decarboxylase. Neurosci 6: 875–895CrossRefGoogle Scholar
  48. Raitieri M, Federico R, Coletti A, Levi G (1975) Release and exchange studies relating to the synaptosomal uptake of GABA. JNeurochem 24: 1243–1250CrossRefGoogle Scholar
  49. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. TINS 7: 320–325Google Scholar
  50. Reubi JC, Cuenod M (1976) Release of exogenous glycine in the pigeon optic tectum during stimulation of a midbrain nucleus. Brain Res 112: 347–361PubMedCrossRefGoogle Scholar
  51. Roberts PJ, Yates RA (1976) Tectal deafferentation in the frog: selective loss of L-glutamate and gammaaminobutyric acid. Neurosci 1: 371–374CrossRefGoogle Scholar
  52. Rubin RP (1970) The role of calcium in the release of neurotransmitter substances and hormones. Pharmacol Res 22: 389–428Google Scholar
  53. Sandoval ME, Cotman CW (1978) Evaluation of glutamate as neurotransmitter of cerebellar parallel fibers. Neurosci 3: 199–206CrossRefGoogle Scholar
  54. Sandoval ME, Lara R (1984) Caracteristicas de la transmision sinaptica quimica. In: Pasantes-Morales H, Arechiga H (eds) Aminoacidos y peptidos neuroactivos. Universidad National Autonoma de Mexico, MexicoGoogle Scholar
  55. Sandoval ME, Horch P, Cotman CW (1978) Evaluation of glutamate as a hippocampal neurotransmitter. glutamate uptake and release from synaptosomes. Brain Res 142: 285–299PubMedCrossRefGoogle Scholar
  56. Sandoval ME, Torner CA, Medrano L (1984) High-affinity uptake and Ca-dependent release of glutamic acid in the developing cerebellum. Neurosci 11: 867–875CrossRefGoogle Scholar
  57. Schwartz EA (1982) Calcium-independent release of GABA from isolated horizontal cells of toad retina. J Physiol 323: 211–227PubMedGoogle Scholar
  58. Shefner SA, Levy RA (1981) The contribution of increases in extracellular potassium to primary afferent depolarization in the bullfrog spinal cord. Brain Res 205: 321–335PubMedCrossRefGoogle Scholar
  59. Simon JR, Martin DL, Kroll M (1974) Sodium-dependent efflux and exchange of GABA in synaptosomes. JNeurochem 23: 981–991CrossRefGoogle Scholar
  60. Snyder SH, Kuhar MJ, Green AI, Coyle JT, Shoskan EG (1970) Uptake and subcellular localization of neurotransmitters in the brain. fat Rev Neurobio 113: 127–158CrossRefGoogle Scholar
  61. Snyder SH (1975) The glycine synaptic receptor in the mammalian central nervous system. BrJPharmacol 53: 473–484Google Scholar
  62. Storm-Mathisen J (1976) Distribution of the components of the GABA system in neuronal tissue: cerebellum and hippocampus-effects of axotomy. In: Roberts E, Chase TU, Tower DB (eds) GAGA in nervous system function. Raven Press, New York, pp 149–168Google Scholar
  63. Sykova E, Vyklicky L (1977) Changes of extracellular potassium activity in isolated spinal cord of frog under high Mg concentrations. Neurosci Lett 4: 161–165PubMedCrossRefGoogle Scholar
  64. Villani L, Contestabile A, Niso A (1982) Electron microscopic demonstation of neurons and synaptic terminals selectively accumulating 3H-GABA in goldfish optic tectum. Bas Appl Histochem 26: 185–191Google Scholar
  65. Werman R (1966) Criteria for identification of a central nervous system transmitter. Comp Biochem Physiol 18: 745–766PubMedCrossRefGoogle Scholar
  66. Whittaker UP (1969) The synaptosome. In: Lajtha A (ed) Handbook of neurochemistry Vol H. Plenum Press, New York, pp 327–364Google Scholar
  67. Woodward DJ, Hoffer RJ, Siggins GR, Oliver AP (1976) Inhibition of Purkinje cells in the frog cerebellum. II. Evidence for GABA as the inhibitory transmitter. Brain Res 33: 91–100CrossRefGoogle Scholar
  68. Yamamoto C, Matsui S (1976) Effect of stimulation of an excitatory nerve tract on release of glutamic acid from olfactory cortex slices in vitro. JNeurochem 26: 487–491CrossRefGoogle Scholar
  69. Yates RA, Roberts PJ (1974) Effects of enucleation and intraocular colchicine on amino acids of frog optic tectum. JNeurochem 233: 891–894CrossRefGoogle Scholar
  70. Yates RA, Taberner PV (1975) Glutamic acid, GABA and their metabolizing enzymes in the frog central nervous system. Brain Res 84: 397–404CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • M. E. Sandoval
    • 1
  • L. Massieu
    • 1
  • P. Araiza
    • 1
  • J. Fernandez
    • 1
  1. 1.Instituto de Fisiologia CelularUniversidad Nacional Autónoma de MéxicoMéxico, D.F.México

Personalised recommendations