Skip to main content

Morphological and Physiological Studies of Tectal and Pretectal Neurons in the Frog

  • Chapter
Book cover Visuomotor Coordination

Abstract

Intracellular recording and staining techniques were applied to visual neurons in frog’s optic tectum and pretectum to study receptive fields, response characteristics, cellular morphologies, axonal projections, and synaptic organizations. In the first experiment, response properties of labeled neurons, classified according to extracellular studies, could be correlated with morphology. Class T5.1 neurons were identified as large ganglionic neurons in layer 8 or 7, and pear-shaped neurons in layer 8 or the top of 6. No obvious relationship was found between physiological and morphological properties. Class T5.2 neurons were located on top of layer 6 and resembled the pyramidal type; an axon could be traced to the medulla oblongata. Class T5.3 neurons were identified as large ganglionic neurons in layer 8. Neurons responding predominantly by IPSPs could be identified as pear-shaped neurons in layers 2, 4, or 6. In the second experiment, axonal projections of neurons in the pretectal caudal thalamus were examined Some neurons from the Lpd (lateral posterodorsal) nucleus projected bilaterally to both optic lobes or to the contralateral tectum; from P (posterocentral) nucleus neurons projected toward the medulla oblongata. To electrical stimulation of the optic tract, the former neurons exhibited an EPSP and the latter an EPSP followed by IPSP. In the third experiment, a pulse-triggered averaging technique was applied to investigate retino-tectal connections. Synaptic organizations between retinal on-off fibers and tectal E-E type neurons (EPSP at on and at off of diffuse light) and EI-EI type neurons (EPSP and IPSP at on and at off of diffuse light), respectively, were examined. It was found that tectal neurons of these types are monosynaptically excited by on-off retinal fibers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246: 238–253

    Article  PubMed  CAS  Google Scholar 

  • Arbib MA (1982) Modelling neuronal mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neuronal nets Springer-Verlag, Berlin Heidelberg New York, pp 342–370

    Chapter  Google Scholar 

  • Brookhart JM, Fadiga E (1960) Potential field initiated during monosynaptic activation of frog motoneurons. J Physiol 150: 633–655

    PubMed  CAS  Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo L). Z Verg! Physiol 61: 41–70

    Google Scholar 

  • Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Verg Physiol 74: 81–102

    Article  Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 247–399

    Google Scholar 

  • Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/Praetectum/Tectum: retinale Topographie and physiologische Interaktionen bei der Kröte (Bufo bufo). J Comp Physiol 92: 343–356

    Article  Google Scholar 

  • Ewert J-P, Matsumoto N, Schwippert WW (1985) Morphological identification of prey-selective neurons in the grass frog’s optic tectum. Naturwissenschaften 72: 661–662

    Article  PubMed  CAS  Google Scholar 

  • Görcs T, Antal M, Olah E, Székely G (1979) An improved cobalt labelling technique with complex compounds. Acta Biol Acad Sci Hung 30: 79–86

    PubMed  Google Scholar 

  • Grösser O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinds R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 298–385

    Google Scholar 

  • Hardy O, Leresche N, Jassik-Geschenfeld (1985) Morphology and laminar distribution of electrophysiologically identified cells in the pigeon’s optic tectum: an intracellular study. J Comp Neurol 233: 390–404

    CAS  Google Scholar 

  • Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets Springer-Verlag, Berlin Heidelberg New York, pp 371–393

    Google Scholar 

  • Lâzdr G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung 19: 325–334

    Google Scholar 

  • Lazdr G (1984) Structure and connection of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York London, pp 185–210

    Google Scholar 

  • Lr G, Toth P, Csank G, Kicliter E (1983) Morphology and location of the tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neurol 215: 108–120

    Article  Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47: 1940–1951

    Google Scholar 

  • Matsumoto N, Bando T (1978) Intracellular recordings of tectal cells of the frog. Proc Jap Acad 54B: 386–390

    Article  Google Scholar 

  • Matsumoto N, Bando T (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39–48

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physio! 159: 721–739

    Article  Google Scholar 

  • Nagano K, Li QL, Tamada A, Matsumoto N (1988) An analysis of postsynaptic potentials of tectal neurons of the frog. correlation with impulses recorded from the terminals of retino-tectal afferents. P_xp Brain Res70: 429–432

    Google Scholar 

  • Perkel DH, Gerstein GL, Moor GP (1967) Neuronal spike trains. II: Simultaneous spike trains. Biophysical J 7: 419–440

    CAS  Google Scholar 

  • Rubinson K (1968) Projections of the tectum opticum of the frog. Brain Behav Evol 1: 529–561

    Article  Google Scholar 

  • Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo (L). JComp Physiol 157: 739–748

    Article  CAS  Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt prey features in the frog Rana temporaries. J Comp Physiol 141: 139–158

    Article  Google Scholar 

  • Székely G, Ldzâr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–437

    Chapter  Google Scholar 

  • Tanaka K (1983) Cross-correlation analysis of geniculostriate neuronal relationships in cats. J Neurophysiol 49: 1303–1318

    PubMed  CAS  Google Scholar 

  • Toyama K, Kimura M, Tanaka K (1981) Cross-correlation analysis of interneuronal connectivity in cat visual cortex. JNeurophysiol 46: 191–201

    CAS  Google Scholar 

  • Tsai HJ, Ewert J-P (1988) Influence of stationary and moving background textures of the response of visual neurons in toads (Bufo bufo). Brain Behav Evol (in press)

    Google Scholar 

  • Urban L, Székely G (1983) Intracellular staining of motoneurons with cobalt complex compounds in the frog. J Neurobio 114: 157–161

    Google Scholar 

  • Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429–434

    Article  Google Scholar 

  • Weerasuriya A, Ewert J-P (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufa Soc Neurosci Abstr 9: 536

    Google Scholar 

  • Wilczynski W, Northcutt R (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neuro 1173: 219–229

    Article  Google Scholar 

  • Witpaard J, ter Keurs HEDL (1975) A reclassification of retinal ganglion cells in the frog, based upon tectal endings and response properties. Vision Res 15: 1933–1938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Matsumoto, N. (1989). Morphological and Physiological Studies of Tectal and Pretectal Neurons in the Frog. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics