Advertisement

Cellular Architecture and Connectivity of the Frog’s Optic Tectum and Pretectum

  • Gyula Lazar

Abstract

The result of studies, in which horseradish peroxidase or cobalt was used to label neurons and fiber tracts in the frog’s brain are summarized in this paper. Focal cobalt injections into various layers of the optic tectum label small groups of neurons which appear as columns formed by dendrites oriented perpendicular to the surface. This arrangement of neurons resembles that of the cortex of mammals. In frogs tectal neurons projecting to the medulla oblongata and the spinal cord were identified as large ganglionic, pyramidal, and large piriform cells with widely arborizing dendritic trees. Large piriform neurons with narrow dendritic trees and small piriform neurons project to the isthmic nucleus. All tectal cell types which project to the medulla, are also efferents for the pretectum and other diencephalic nuclei, but the majority of neurons projecting rostrally are small piriform cells of layer 8. Afferents to the tectum originate bilaterally from the retina, pretectum, and the isthmic nucleus, and ipsilaterally from certain thalamic nuclei, the nucleus profundus lateralis, the anterodorsal and posterodorsal tegmental nuclei, and from the contralateral optic tectum. Retinal and isthmic afferents terminate in the superficial strata of the tectum (layers 8 and 9) and non-retinal afferents distribute in the deep layers (layers 2 to 6). Two nuclei receive retinal afferents in the pretectal area: the nucleus lentiformis mesencephali and the posterior thalamic nucleus. Both nuclei project to the ipsilateral medulla and to both tecta. Non-retinal afferents arrive at the pretectum from the ipsilateral striatum, anterior and lateral thalamic nuclei, pretectal grey, optic tectum and the medullary reticular formation, and from the contralateral superior vestibular nucleus and posterior thalamic nucleus.

Keywords

Optic Tectum Tegmental Nucleus Pretectal Nucleus Local Circuit Neuron Tectal Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246: 238–253PubMedCrossRefGoogle Scholar
  2. Arbib MA (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 342–370CrossRefGoogle Scholar
  3. Arbib MA, Lara R (1982) A neural model of the interaction of tectal columns in prey-catching behavior. Bio! Cybern 44: 185–196CrossRefGoogle Scholar
  4. Cajal PR y (1946) El cerebros de los batracios. Trab Inst Cajal Invest Bio! 38: 41–111Google Scholar
  5. Cajal SR y (1911) Histologie due Systeme nerveux de rhomme et des vertebres. Maloine, ParisGoogle Scholar
  6. Cochran SL, Dieringer N, Precht W (1984) Basic optokinetic-ocular reflex pathways in the frog. J Neurosci 4: 43–57PubMedGoogle Scholar
  7. Constantine-Paton M, Law MI (1978) Eye-specific termination bands in tecta of three-eyed frogs. Science 202: 639–641PubMedCrossRefGoogle Scholar
  8. Constantine-Paton M, Pitts EC, Reh TA (1983) The relationship between retinal axon ingrowth, terminal morphology, and terminal patterning in the optic tectum of the frog. J Comp Neural 218: 297–313Google Scholar
  9. Contestabile A (1976) Comparative survey on enzyme localization, ultrastructural arrangement and functional organization in the optic tectum of nonmammalian vertebrates. Experientia (Basel) 32: 1223–1229CrossRefGoogle Scholar
  10. Ewert J-P (1971) Single unit responses of the toad’s (Bufo americanus) caudal thalamus to visual objects. Z Vergi Physiol 74: 81–102CrossRefGoogle Scholar
  11. Ewert J-P (1980) Neuroethology. An introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  12. Ewert J-P, Burghagen H, Schiirg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475CrossRefGoogle Scholar
  13. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–399Google Scholar
  14. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of (14C)2DG autoradiographs. J Comp Physio 1156: 433–445CrossRefGoogle Scholar
  15. Fite KV (1976) (ed) The amphibian visual system: a multidisciplinary approach. Academic Press,New YorkGoogle Scholar
  16. Gaupp E (1899) Anatomie des Frosches. Vieweg, BraunschweigGoogle Scholar
  17. Gaze RM (1958) The representation of the retina on the optic lobe of the frog. Quart JErp Physiol 43: 209–214Google Scholar
  18. Grobstein P, Comer C, Hollyday M, Archer SM (1978) A crossed isthmotectal projection in Rana pipiens and its involvement in the ipsilateral visuotectal projection. Brain Res 156: 117–123PubMedCrossRefGoogle Scholar
  19. Gruberg ER, Lettvin JY (1980) Anatomy and physiology of a binocular system in the frog Rana pipiens. Brain Res 192: 313–325CrossRefGoogle Scholar
  20. Gruberg ER, Udin SB (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. J Comp Neural 179: 487–500CrossRefGoogle Scholar
  21. Griisser O-J, Grässer-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385Google Scholar
  22. Halpern M (1972) Some connections of the telencephalon of the frog, Rana pipiens. An experimental study. Brain Behav Evol 6: 42–68PubMedCrossRefGoogle Scholar
  23. Herrick CJ (1948) The brain of the tiger salamander. University of Chicago Press, ChicagoGoogle Scholar
  24. Ide CF, Fraser SE, Meyer RL (1983) Eye dominance columns from an isogenic double-nasal frog eye. Science 221: 293–295CrossRefGoogle Scholar
  25. Inagaki S, Senba E, Shiosaka S, Takagi H, Kawai Y, Takatsuki K, Sakanaka M, Matsuzaki T, Tohyama M (1981) Regional distribution of substance P-like immunoreactivity in the frog brain and spinal cord immunohistochemical analysis. J Comp Neural 201: 243–254CrossRefGoogle Scholar
  26. Ingle DJ (1976) Behavioral correlates of central visual function in anurans. In: Llin6s R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 435–451Google Scholar
  27. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 177–226CrossRefGoogle Scholar
  28. Kicliter E (1979) Some telencephalic connections in the frog, Rana pipiens. J Comp Neural 185: 75–86CrossRefGoogle Scholar
  29. Kiro CM (1948) A comparative histology of the midbrain of amphibians. In: Collection in memory of AA Zavazzin. USSR Academy of Sciences Press, Moscow, pp 54–80 (in Russian)Google Scholar
  30. Kostyk SK, Grobstein P (1987a) Neuronal organization underlying visually elicited prey orienting in the frog. II: Anatomical studies on the laterality of central projections. Neurosci 21: 57–82CrossRefGoogle Scholar
  31. Kostyk SK, Grobstein P (1987b) Neuronal organization underlying visually elicited prey orienting in the frog. III: Evidence for the existence of an uncrossed descending tectofugal pathway. Neurosci 21: 83–96CrossRefGoogle Scholar
  32. Kuljis RO, Karten HJ (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201PubMedCrossRefGoogle Scholar
  33. Kuljis RO, Karten HJ (1983) Modifications in the laminar organization of peptide-like immunoreactivity in the anuran optic tectum following retinal deafferentation. J Comp Neurol 217: 239–251PubMedCrossRefGoogle Scholar
  34. Law MI, Constantine-Paton M (1981) Anatomy and physiology of experimentally produced striped tecta. J Neurosci 1: 741–759PubMedGoogle Scholar
  35. Lara R, Arbib MA, Cromarty AS (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior, a neural model. JNeurosci 2: 521–530Google Scholar
  36. Lazar Gy (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung20: 171–183Google Scholar
  37. Laazâr Gy (1978) Application of cobalt-filling technique to show retinal projections in the frog. Neurosci 3: 725–736CrossRefGoogle Scholar
  38. Lazar Gy (1979) Organization of the frog visual system. In: Lissak K (ed) Recent developments of neurobiology in Hungary. Akademiai Kiado, Budapest, pp 9–50Google Scholar
  39. Lâzdr Gy (1984) Structure and connections of the optic tectum. In: Vanegas H (ed) Comparative neurology of the optic rectum. Plenum Press, New York, pp 185–210Google Scholar
  40. Lazar Gy, Kozicz T (1988) Neuronal pathways of the lateral forebrain bundle in the frog, Rana esculenta (in preparation)Google Scholar
  41. LSzJr Gy, Székely Gy (1967) Golgi studies on the optic center of the frog. JHirnforsch 9: 329–344Google Scholar
  42. Lazar Gy, Tompos G (1988) Neuronal connectivity and cell morphology of the frog’s diencephalon. A study with cobalt labeling (in preparation)Google Scholar
  43. Ldzgr Gy, Alkonyi B, Tóth P (1983a) Reinvestigation of the role of the accessory optic system and the pretectum in the horizontal head nystagmus of the frog. Lesion experiments. Acta Biol Acad Sci Hung34: 385–393Google Scholar
  44. Lazar Gy, Tóth P, Csank Gy, Kicliter E (1983b) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt filling. J Comp Neurol 215: 108–120CrossRefGoogle Scholar
  45. Lettvin JW, Maturana HR, McCulloch WS, Pitts WI-I (1959) What the frog’s eye tells the frog’s brain? Proc IRL 47: 1940–1951CrossRefGoogle Scholar
  46. Llinas R, Precht W (eds) (1976) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York Matsumoto N, Bando T, (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39. 48Google Scholar
  47. Matsumoto DE, Scalia F (1981) Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina. J Comp Neurol 20: 135–155CrossRefGoogle Scholar
  48. Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol 159: 721–739CrossRefGoogle Scholar
  49. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43: 129–176PubMedCrossRefGoogle Scholar
  50. Merchenthaler I, Liz* Gy, Maderdrut JL (1988) Distribution of proenkephalin-peptides in the brain of Rana esculenta (in preparation)Google Scholar
  51. Merchenthaler I, Maderdrut JL, Läzär Gy, Gulyas I, Petrusz P (1987) Immunocytochemical analysis of proenkephalin-derived peptides in the amphibian hypothalamus and optic tectum. Brain Res 416: 219–227PubMedCrossRefGoogle Scholar
  52. Montgomery NM, Fite KV, Grigonis AM (1985) The pretectal nucleus lentiformis mesencephali of Rana pipiens. J Comp Neurol 234: 264–275CrossRefGoogle Scholar
  53. Montgomery N,Fite KV, Taylor M, Bengston L (1982) Neural correlates of optokinetic nystagmus in the mesencephalon of Rana pipiens: functional analysis. Brain BehavEvol 21: 137–150Google Scholar
  54. Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neural 213: 262–278CrossRefGoogle Scholar
  55. Northcutt RG (1974) Some histochemical observations on the telencephalon of the bullfrog, Rana catesbeiana. J Comp Neural 157: 379–390CrossRefGoogle Scholar
  56. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOB (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–256CrossRefGoogle Scholar
  57. Potter HD (1965) Mesencephalic auditory region of the bullfrog. J Neurophysiol 28: 1132–1154PubMedGoogle Scholar
  58. Potter HD (1969) Structural characteristics of cell and fiber population in the optic tectum of the frog (Rana catesbiana). J Comp Neurol 136: 203–232CrossRefGoogle Scholar
  59. Potter HD (1972) Terminal arborizations of retinotectal axons in the bullfrog. J Comp Neural 144: 269–284CrossRefGoogle Scholar
  60. Röthig P (1927) Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. 11. Über die Faserzüge in Mittelhirn, Kleinhirn, and Medulla oblongata der Urodelen and Anuren. ZMikrAnat Forsch 10: 381–472Google Scholar
  61. Rubinson K (1968) Projections of the tectum opticum of the frog. Brain BehavEvo! 1: 529–561CrossRefGoogle Scholar
  62. Scalia F, Fite KV (1974) A retinotopic analysis of the central connections of the optic nerve in the frog. J Comp Neural 158: 455–478CrossRefGoogle Scholar
  63. Scalia F, Gregory K (1970) Retinofugal projections in the frog, location of the postsynaptic neurons. Brain Behav Evol 3: 16–29PubMedCrossRefGoogle Scholar
  64. Setalo G, Székely G (1967) The presence of membrane specializations indicative of somato-dendritic synaptic junctions in the optic tectum of the frog. Erp Brain Res 4: 237–242Google Scholar
  65. Sood PP (1978) Chemoarchitectonics of the optic tectum of frogs (Rana tigrina). Cell Mol Dial 23: 195–205Google Scholar
  66. Sperry RW (1943) Effect of 180° degree rotation of the retinal field on visuomotor coordination. J Bxp Zoo! 92: 263–279CrossRefGoogle Scholar
  67. Sperry RW (1944) Optic nerve regeneration with return of vision in anurans. JNeurophysiol 7: 57–71Google Scholar
  68. Sperry RW (1945) Restortion of vision after crossing the optic nerves and after contralateral transplantation of eye. JNeurophysiol 8: 15–29Google Scholar
  69. Straznicky C, Tay D, Hiscock J (1980) Segregation of optic fibre projections into eye-specific bands in dually innervated tecta in Xenopus. Neurose! Lett 19: 131–136CrossRefGoogle Scholar
  70. Ströer WFH (1940) Zur vergleichenden Anatomie des primären optischen System bei Wirbeltieren. Z Anat Entwickl Gesch 110: 301–321CrossRefGoogle Scholar
  71. Székely G, Läzär Gy (1976) Cellular and synaptic architecture of the optic tectum. In: Llinäs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar
  72. Székely G, Setalo G, Läzär Gy (1973) Fine structure of the frog’s optic tectum: optic fibre termination layers. JHirnforsch 14: 189–225Google Scholar
  73. Takagi S, Tsuji T, Amagai T, Takamatsu T, Fujisawa H (1987) Specific cell surface labels in the visual centers of Xenopus laevis tadpole identified using monoclonal antibodies. Develop Biol 122: 90–100 TGoogle Scholar
  74. enDonkelaar HJ, de Boer-van Huizen R, Schouten FTM, Eggen SJH (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad (Xenopus laevis). Neurosci 6: 2297–2312Google Scholar
  75. Toth P, Csank Gy, LizOr Gy (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculents A tracing study using cobaltic-lysine complex. JHirnforsch 26: 365–383Google Scholar
  76. Trachtenberg MC, Ingle DJ (1974) Thalamo-tectal projection in the frog. Brain Res 79: 419–430PubMedCrossRefGoogle Scholar
  77. Vesselkin NP, Ermakova TV, Kenigfest B, Goikovic M (1980) The striatal connections in frog Rana temporaiia: an HRP study. JHimforsch 21: 381–390Google Scholar
  78. Weerasuriya A (1983) Snapping in toads: some aspects of sensory-motor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–626Google Scholar
  79. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physio1 144: 429–434CrossRefGoogle Scholar
  80. Wilczinsky W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neural 173: 219–230CrossRefGoogle Scholar
  81. Wlassak R (1893) Die optischen Leitungsbahnen des Frosches. Arch Anat Physiol (Physiol Abtlg) Suppl: 1–28Google Scholar
  82. Yucel YH, Hindelang C, Stoeckel ME, Bonaventure N (1988) GAD immunoreactivity in pretectal and accessory optic nuclei of the frog mesencephalon. Neurosci Lett 84: 1–6PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Gyula Lazar
    • 1
  1. 1.Department of AnatomyUniversity Medical SchoolPecsHungary

Personalised recommendations