Advertisement

Neural Models, Rana and Robots

  • Christoph von der Malsburg

Abstract

The technological analog of the model “Rana computatrix” — the construction of flexible robots — constitutes a renewed source of interest in neuroscience. This chapter gives a short overview of goals, problems, and perspectives involved in modeling a relatively simple behavior with respect to the various levels of data structure.

Keywords

Neural Model Behavioral State Complex Scene Neural Architecture Visuomotor Coordination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib MA (1982) Rana computatriac An evolving model of visuomotor coordination in frog and toad: In: Hayes JE, Michie D, Pao YH (eds) Machine intelligence. Ellis Horwood, Chichester, pp. 501–517Google Scholar
  2. Arbib MA (1987a) Levels of modelling of mechanisms of visually guided behavior. Behav Brain Sci 10 (in press)Google Scholar
  3. Arbib MA (1987b) Brains, machines, and mathematics. Springer-Verlag, New York Berl in HeidelbergGoogle Scholar
  4. Arbib MA, Hesse MB (1986) The construction of reality. Cambridge Univ Press, Cambridge MassCrossRefGoogle Scholar
  5. Ballard DH, Hinton GE, Sejnowski Ti (1983) Parallel visual computation. Nature 306: 21–26PubMedCrossRefGoogle Scholar
  6. Bienenstock E, Malsburg C vd (1987) A neural network for invariant pattern recognition. Europhys Lett 4 (1): 121–126CrossRefGoogle Scholar
  7. Creutzfeldt, OD (1983) Cortex Cerebri. Leistung, strukturelle und funktionelle Organisation der Hirnrinde. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  8. Eccles JC, Ito M, Szentagothai J (1967) The cerebellum as a neural machine. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  9. Ecknriller R, Malsburg C v d (1988) Neural computers. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  10. Hebb DO (1949) The organization of behavior. John Wiley, New YorkGoogle Scholar
  11. Lehky SR, Sejnowski TJ (1988) Neural network model for the cortical representation of surface curvature from images of shaded surfaces. In: Lund JS (ed) Sensory processing. Oxford Univ Press, OxfordGoogle Scholar
  12. Malsburg C vd (1981) The correlation theory of brain function. Internal Rep 81–2 MPI Biophysical Chemistry, 3400 Göttingen, FR GermanyGoogle Scholar
  13. Malsburg C vd (1988a) A neural architecture for the representation of scenes. In: McGaugh JL, Weinberger NM, Lynch G (eds) Brain organization and memory: cells, systems, and circuits. Oxford Univ Press, New YorkGoogle Scholar
  14. Malsburg C vd (1988b) Pattern recognition by labeled graph matching. Neural Networks (in press)Google Scholar
  15. Malsburg C vd, Schneider W (1986) A neural cocktail-party processor. Bio! Cybern 54: 29–40CrossRefGoogle Scholar
  16. Piaget J (1971) Biology and knowledge. Edinburgh Univ Press, EdinburghGoogle Scholar
  17. Rumelhart DE, McClelland JL (1986) Parallel distributed processing. explorations in the microstructure of cognition. MIT Press, Cambridge LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Christoph von der Malsburg
    • 1
  1. 1.Max-Planck-Institut für Biophysikalische ChemieGöttingenFR Germany

Personalised recommendations