Learning and Memory in the Toad’s Prey/Predator Recognition System: A Neural Model

  • Rolando Lara

Abstract

A neural model of the mechanisms responsible for learning in the prey/predator recognition system of the toad is proposed. The prey/predator recognition system consists of retina-tectum-thalamus-pretectum interactions. This system is modulated by a group of (telencephalic and thalamic) neurons which can change the inhibitory effect of pretectal neurons on tectal cells as a result of experience. The model can simulate the following phenomena: (1) Long-term stimulus-specific habituation; (2) learning to avoid bees; (3) learning not to avoid, and even to snap at, predator-like stimuli; (4) learning to discriminate between palatable and unpalatable stimuli based on color cues. All these changes are produced not as a consequence of change in the transmission of information across subsequently connected neurons, but as a change in the dynamics of a whole network. Learning in our model is exhibited as the capacity of the system to choose for a specific situation the proper motor pattern rather than as the mere storage of information. Learning in this sense can be regarded as the dynamic changes of the system that allow the animal to shift from one to another motor schema or to assign different perceptual schemas to the same motor schema.

Keywords

Neural Model Motor Schema Bufo Bufo Perceptual Schema Tectal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib MA, Lara R (1982) A neural model of the role of the tectum in prey-catching behavior. Biol Cybern 44: 185–196PubMedCrossRefGoogle Scholar
  2. Brower JVZ, Brower LP (1962) Experimental studies of mimicry 6: the reaction of toads (Bufo terrestris) to honey bees (Apis mellifera) and their dragonfly mimics (Eristalis vinetorum). Amer Naturalist 96: 297–307CrossRefGoogle Scholar
  3. Brower LP, Brower JVZ, Westcott PW (1960) Experimental studies of mimicry 5: the reaction of toads (Bufo terrestris) to bumble bees (Bombus americanorum) and their robberfly mimics (Mallophora bomboides), with discussion of aggressive mimicry. Amer Naturalist 94: 343–356CrossRefGoogle Scholar
  4. Brzoska J, Schneider H (1978) Modifications of prey catching behavior by learning in the common toad (Bufo b bufo L, Anura, Amphibia): Changes in response to visual objects and effects of auditory stimuli. Behav Process 3: 125–136CrossRefGoogle Scholar
  5. Cott HB (1936) The effectiveness of protective adaptation in the hive bee illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo L). Proc Zool Soc Lond 1: 113–133Google Scholar
  6. Doty RW (1987) Has the greedy toad lost its soul; and if so, what was it? A commentary. Behav Brain Sci 10 (3): 375CrossRefGoogle Scholar
  7. Ewert J-P (1965) Der Einfluß peripherer Sinnesorgane and des Zentralnervensystems auf die Anwortbereitschaft bei der Richtbewegung der Erdkröte (Bufo bufo L). PhD Thesis, Univ of GöttingenGoogle Scholar
  8. Ewert J-P, (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo L). Z Veigl Physiol 61: 41–70Google Scholar
  9. Ewert J-P (1970) Neural mechanisms of prey-catching behavior and avoidance in the toad (Bufo bufo L). Brain Behav Evol 3: 35–56CrossRefGoogle Scholar
  10. Ewert J-P (1971) Single unit responses of the toadss caudal thalamus to visual objects. Vergi Physiol74: 81102Google Scholar
  11. Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 141–202Google Scholar
  12. Ewert J-P (1980) Neuroethology. An introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  13. Ewert J-P (1982) Configurational prey-selection by individual experience in the toad. Univ of Mass, Amherst, COINS Tech Rep 82–16Google Scholar
  14. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in the toad. In: Vanegas H (ed) Neurology of the optic tectum. Plenum Press, New York, pp 247–416Google Scholar
  15. Ewert J-P, Kehl W (1978) Configurational prey selection by individual experience in the toad Bufo bufo. J Comp Physiol 126: 105–114CrossRefGoogle Scholar
  16. Ewert J-P, Seelen W v (1974) Neurobiologie and System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14: 167–183CrossRefGoogle Scholar
  17. Ewert J-P, Borchers HW, Wietersheim A v (1979) Directional sensitivity, invariance and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo. J Comp Physiol 132: 191–201CrossRefGoogle Scholar
  18. Griisser O-J, Griisser-Cornehis U (1976) Neurophysiology of the anuran visual system. In: Llinz s R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385CrossRefGoogle Scholar
  19. Horn R, Greiner B, Horn I (1979) The effect of ACTH on habitutation of the turning reaction in the toad Bufo bufo L. J Comp Physiol 131: 129–135CrossRefGoogle Scholar
  20. Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424 Kondrashev SL (1987) Neuroethology and color vision in amphibians. A commentary. Behav Brain Sci 10 (3): 385Google Scholar
  21. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus-specific habituation in toads. Biol Cybern 51: 223–237PubMedCrossRefGoogle Scholar
  22. Lara R, Arbib MA, Cromarty A (1982) The role of the tectal column in facilitation of amphibian prey-catching behavior a neural model. JNeurosci 2: 90–100Google Scholar
  23. Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 371–393CrossRefGoogle Scholar
  24. Lashley KS (1929) Brain mechanisms and intelligence: quantitative studies on injuries to the brain. Chicago Univ Press, ChicagoCrossRefGoogle Scholar
  25. Mikulka P, Hughes J, Aggerup G (1980) The effect of pretraining procedures and discriminative stimuli on the development of prey selection behaviors in the toad (Bufo terrestris). BehavNeurol Biol 29: 5262Google Scholar
  26. Scalia F (1976) The optic pathways of the frog. nuclear organization and connections. In: Llinâs R, Precht W (eds) Frog Neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 386406Google Scholar
  27. Schiirg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of gestalt prey features in the frog Rana temporaria. J Comp Physio1141: 139–152Google Scholar
  28. Székely G, LizAr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinés R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Rolando Lara
    • 1
  1. 1.Centro de Investigaciones en Fisiologia CelularUniversidad Nacional Autonoma de MéxicoMéxicoMéxico

Personalised recommendations