Advertisement

Stimulus-Specific Habituation in Toads: 2DG Studies and Lesion Experiments

  • Thomas Finkenstädt

Abstract

The innate releasing mechanisms of prey-catching in toads can be modified by experience. The present study sheds light on neural substrates involved in stimulus-specific long-term habituation (non-associative learning). Applying the 14C2-deoxyglucose (2DG) technique, the regional distribution of cerebral glucose utilization was compared between (i) toads after stimulus-specific long-term habituation of orienting toward a repeatedly presented prey dummy (“habituation group”) and (ii) toads readily orienting toward the same prey stimulus (“naive group”). In the habituation group, the caudal ventral medial pallium (vMP) (so-called primordium hippocampi), a portion of the preoptic area (PO), and the dorsal hypothalamus (dHYP) showed statistically significant increases in 2DG-uptake; decreases were observed in the anterior thalamic (A) nucleus, the medioventral layers of the optic tectum (vOT), a portion of the tegmental reticular formation (RET), the striatum (STR), and the ventral cerebellum (vCB). The results suggest that stimulus-specific long-term habituation of prey-catching involves structures of the stimulus-response mediating circuit (e.g., vOT), extrinsic structures belonging to a modulatory circuit (e.g., vMP, RET), and relays connecting both circuits (e.g., PO/dHYP, A). According to Sokolov’s hypothesis it is assumed that habituation leads to stimulus-specific after-effects in the modulatory system which accumulate with repetitive presentation of prey and suppress the response toward prey with reference to specific cues. Bilateral vMP-lesions strongly delay habituation without impairing innate prey recognition. Various brain structures (e.g., vMP, vOT, RET) showed opposite changes in 2DG-uptake during habituation and arousal. The underlying brain circuitries are discussed.

Keywords

Optic Tectum Medial Septum Anterior Thalamic Nucleus Bufo Bufo Naive Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altman J, Brunner RL, Bayer SA (1973) The hippocampus and behavioural maturation. Behav Biol 8: 557–596PubMedCrossRefGoogle Scholar
  2. Birukow G, Meng M (1955) Eine neue Methode zur Prüfung des Gesichtssinnes bei Amphibien. Naturwissenschaften 49: 652–653CrossRefGoogle Scholar
  3. Brodai A (1969) Neurological anatomy in relation to clinical medicine. Oxford Univ Press, London Bruner J, Tauc L (1966) Habituation at the synaptic level in Aplysia. Nature 210: 37–39Google Scholar
  4. Campbell BA, Ballantine P, Lynch G (1971) Hippocampal control of behavioral arousal: duration of lesion effects and possible interactions with recovery after frontal cortical damage. Exp Neurol 33(1): 159–170Google Scholar
  5. Chevalier G, Vacher S, Deniau JM (1984) Inhibitory nigral influence on tectospinal neurons, a possible implication of basal ganglia in orienting behavior. ExpBrain Res 53: 320–326Google Scholar
  6. Chin JH, Killam EK, Killam KF (1965) Factors affecting sensory input in the cat: modification of evoked auditory potentials by reticular formation. Electroenceph Clin Neurophysiol18: 567–574Google Scholar
  7. Diebschlag E (1935) Zur Kenntnis der Großhirnfunktionen einiger Urodelen und Anuren. Z Vergl Physiol 21: 343–394Google Scholar
  8. Douglas RJ, Pribram KH (1966) Learning and limbic lesions. Neuropsychologia 5: 197–220CrossRefGoogle Scholar
  9. Eikmanns KI-1 (1955) Verhaltensphysiologische Untersuchungen über den Beutefang und das Bewegungssehen der Erdkröte (Bufo bufo L). Z Tieipsychol 12: 229–253CrossRefGoogle Scholar
  10. Ewert J-P (1967a) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxispezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L). Z Vergl Physiol 57: 263–298CrossRefGoogle Scholar
  11. Ewert J-P (1967b) Der Einfluß von Störreizen auf die Antwortbereitschaft bei der Richtbewegung der Erdkröte (Bufo bufo L). Z Tiespsychol 24: 208–312Google Scholar
  12. Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktions-Beziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L). Pflügers Arch 308: 225–243PubMedCrossRefGoogle Scholar
  13. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer 230: 34–42Google Scholar
  14. Ewert J-P (1980) Neuroethology. An introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  15. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416Google Scholar
  16. Ewert J-P (1987a) Neuroethology: toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Ellen P, Thinus- Blanc C (eds) Cognitive processes and spatial orientation in animal and man, Vol I. Martinus Nijhoff, Dordrecht, pp 177–200Google Scholar
  17. Ewert J-P (1987b) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405CrossRefGoogle Scholar
  18. Ewert J-P, Birukow G (1965) Über den Einfluß des Zentralnervensystems auf die Ermüdbarkeit der Richtbewegung im Beuteschema der Erdkröte Bufo bufo (L). Naturwissenschaften 52: 68–69CrossRefGoogle Scholar
  19. Ewert J-P, Finkenstädt T (1987) Modulation of tectal functions by prosencephalic loops in amphibians. A commentary. Behav Brain Sci 10: 122–123CrossRefGoogle Scholar
  20. Ewert J-P, Ingle DJ (1971) Excitatory effects following habituation of prey-catching activity in frogs and toads. J Comp Physiol Psycho! 77: 369–374CrossRefGoogle Scholar
  21. Ewert J-P, Kehl W (1978) Configurational prey selection by individual experience in the toad Bufo bufo. J Comp Physiol 126: 105–114CrossRefGoogle Scholar
  22. Ewert J-P, Rehn B (1969) Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo vi n rdi s L). Behaviour 35: 212–234CrossRefGoogle Scholar
  23. Finkenstädt T (1987) Verschaltung Interaktion und Funktion visuell beeinflußbarer Hirngebiete bei Amphibien. Habil Thesis, Univ of KasselGoogle Scholar
  24. Finkenstädt T, Ewert J-P (1983) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153: 99–110CrossRefGoogle Scholar
  25. Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad’s brain during anesthesia and stimulation of the ascending reticular arousal system. Natulwissenschaften72: 161–162Google Scholar
  26. Finkenstädt T, Ewert J-P (1988a) Effects of visual associative conditioning on behavior and cerebral metabolic activity in toads. Naturwissenschaften 75: 95–97PubMedCrossRefGoogle Scholar
  27. Finkenstädt T, Ewert J-P (1988b) Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: a 14C–2DG study. J Comp Physiol 163: 1–11CrossRefGoogle Scholar
  28. Finkenstädt T, Ebbesson SOE, Ewert J-P (1983) Projections to the midbrain tectum in Salamandra salamandra L Cell Tiss Res 234: 39–55Google Scholar
  29. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: A computer assisted analysis of (14C)2DG autoradiographs. J Comp Physiol 156: 433–445CrossRefGoogle Scholar
  30. Finkenstädt T, Adler NT, Allen TO, Ewert J-P (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a 14C–2DG study. J Comp Physiol 158: 457–467CrossRefGoogle Scholar
  31. Foreman N, Stevens R (1987) Relationships between the superior colliculus and hippocampus: neural and behavioural considerations. Behav Brain Sci 10: 101–152CrossRefGoogle Scholar
  32. Gallistel CR, Piner CT, Allen TO, Adler NT, Yadin E, Negin M (1982) Computer assisted analysis of 2-DG autoradiographs. NeurosciBiobehavRev 6: 409–422Google Scholar
  33. Gonzalez-Lima F (1986) Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord. Neuroscr Lett 65: 326–330CrossRefGoogle Scholar
  34. Gonzalez-Lima F, Scheich H (1985) Ascending reticular activating system in the rat: a 2-deoxyglucose study. Brain Res 344: 70–88PubMedCrossRefGoogle Scholar
  35. Groves PM, Thompson RF (1970) Habituation: a dual process theory. Psych Rev 77: 419–450CrossRefGoogle Scholar
  36. Grasser O-J, Grasser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llini s R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 298–385Google Scholar
  37. Hernandez-Peon R (1961) Reticular mechanisms of sensory control. In: Rosenblith WA (ed) Sensory communication. Wiley, New York, pp 497–520Google Scholar
  38. Herrick CJ (1933) The amphibian forebrain. VIII: Cerebral hemispheres and palliai primordia. J Comp Neurol 58: 737–759CrossRefGoogle Scholar
  39. Hore J, Vilis T (1980) Arm movement performance during reversible basal ganglia lesions in the monkey. Fxp Brain Res 39: 217–228Google Scholar
  40. Horn G (1967) Neuronal mechanisms of habituation. Nature 215: 707–711PubMedCrossRefGoogle Scholar
  41. Horn E, Greiner B, Horn I (1979) The effect of ACTH on habituation of the turning reaction in the toad Bufo bufo L. J Comp Physiol 131: 129–135CrossRefGoogle Scholar
  42. Jarrard LE (1973) The hippocampus and motivation. Psycho! Bull 79: 1–11CrossRefGoogle Scholar
  43. Juliano SL, Whitsel BL (1987) A combined 2-deoxyglucose and neurophysiological study of primate somatosensory cortex. J Comp Neural 263: 514–525CrossRefGoogle Scholar
  44. Kandel E (1976) Cellular basis of behavior: an introduction to behavioral neurobiology. Freeman, New YorkGoogle Scholar
  45. Krasne FB, Kandel ER, Truman JW (1979) Simple systems revisited. Neurosci Res Prog Bull 17 (4): 529–538Google Scholar
  46. Laming PR, McKee M (1981) Deficits in habituation of cardiac arousal responses incurred by telencephalic ablation in Goldfish (Carassius auratus) and their relation to other telencephalic functions. J Comp Physiol Psycho! 95 3: 460–467CrossRefGoogle Scholar
  47. Laming PR, Ennis P (1982) Habituation of fright and arousal responses in the teleosts Carassius auratus and Rutilus rutilus. J Comp Physiol Psycho! 96 3: 460–466CrossRefGoogle Scholar
  48. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Bio! Cybern 51: 223–237CrossRefGoogle Scholar
  49. Lettvin JY, Maturana HR, Pitts WH, McCulloch WS (1961) Two remarks on the visual system of the frog. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge MA, pp 757–776Google Scholar
  50. Llinâs R, Precht W (1969) Inhibitory vestibular efferents system and its relation to the cerebellum in the frog. amp;p Brain Res 9: 19–29Google Scholar
  51. Masino T, Grobstein P (1986) The organization of tectal projections to the ventral midbrain in Rana pipiens. Soc Neurosci Abstr 84: 11Google Scholar
  52. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroenceph Clin Neurophysiol 1: 455–473PubMedGoogle Scholar
  53. Nauta WJH (1963) Central nervous organization and the endocrine motor system. In: Nalbandov AV (ed) Advances in neuroendocrinology. Univ Illinois Press, Urbano, pp 5–21Google Scholar
  54. Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neurol 213: 262–278PubMedCrossRefGoogle Scholar
  55. Nieuwenhuys R, Opdam P (1976) Structure of the brain stem. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 811–855CrossRefGoogle Scholar
  56. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–255CrossRefGoogle Scholar
  57. Patton P, Grobstein P (1986) Possible striatal involvement in prey orienting behavior in the frog. Soc Neurosci Abstr 10 (1): 61Google Scholar
  58. Potter HD (1972) Terminal arborizations of retinotectal axons in the bullfrog. J Comp Neural 144: 269–283CrossRefGoogle Scholar
  59. Ramm P, Frost BJ (1983) Regional metabolic activity in the rat brain during sleep-wake activity. Sleep 6: 196–216PubMedGoogle Scholar
  60. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. TINS 9: 320–325Google Scholar
  61. Ryan AF, Sharp FR (1982) Localization of (3H)2-deoxyglucose at the cellular level using freeze-dried tissue and dry-looped emulsion. Brain Res 252: 177–180PubMedCrossRefGoogle Scholar
  62. Sachs L (1978) Statistische Methoden. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  63. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo (L). J Comp Physio! 157: 739–748CrossRefGoogle Scholar
  64. Segundo JP, Arana R, French JD (1955) Behavioral arousal by stimulation of the brain in the monkey. J Neurosurgl 2: 601–613CrossRefGoogle Scholar
  65. Sharp FR, Ryan AF (1984) Regional (14C)2-deoxyglucose uptake during forelimb movements evoked by rat motor cortex stimulation: pons, cerebellum, medulla, spinal cord, and muscle. J Comp Neural 224: 286–306CrossRefGoogle Scholar
  66. Sokoloff L (1984) Modeling metabolic processes in the brain in vivo. Ann Neural Supp! 15: 1–11CrossRefGoogle Scholar
  67. Sokoloff L, Reivich M, Kennedy C, DesRosiers MH, Patlak CS, Pettigrew KD, Sakurada O, Shinohara M (1977) The (14C)-deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916PubMedCrossRefGoogle Scholar
  68. Sokolov EN (1960) In: Brazier MAB (ed) The central nervous system and behaviour. Josiah Macy Jun. Foundation, New YorkGoogle Scholar
  69. Sokolov EN (1975) Neuronal mechanisms of the orienting reflex. In: Sokolov EN, Vinogradova O (eds) Neuronal mechanisms of the orienting reflex. Lawrence Erlbaum/Hillsdale, New York, pp 217–235Google Scholar
  70. Székely G, Iazâr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar
  71. Theurich M, Müller CM, Scheich H (1984) 2-deoxyglucose accumulation parallels extracellularly recorded spike activity in the avian auditory neostriatrum. Brain Res 322: 157–161Google Scholar
  72. Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neural substrates of behavior. Psych Rev 73: 16–43CrossRefGoogle Scholar
  73. Trepakov VV (1974) Postsynaptic inhibition in the frog’s primordial hippocampus. Neurofiziologia 5: 583–592Google Scholar
  74. Vinogradova O (1970) Registration of information in the limbic system. In: Horn G, Hinde RA (eds) Short term changes in neural activity and behavior. Cambridge University Press, Cambridge, pp 95–140Google Scholar
  75. Vinogradova O (1975) Hippocampus and the orienting reflex. In: Sokolov EN, Vinogradova O (eds) Neuronal mechanisms of the orienting reflex. Lawrence Erlbaum/Hillsdale, New York, pp 128–154Google Scholar
  76. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neurol 173: 219–229CrossRefGoogle Scholar
  77. Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: afferent organization. J Comp Neural 214: 321–332CrossRefGoogle Scholar
  78. Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214: 333–342PubMedCrossRefGoogle Scholar
  79. Zimmermann E, Rahmann H (1987) Acoustic communication in the poison-arrow frog Phyllobates tricolor advertisement calls and their effects on behavior and metabolic brain activity of recipients. J Comp Physiol 160: 693–702CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Thomas Finkenstädt
    • 1
  1. 1.Abteilung Neuroethologie, Fachbereich Biologie/ChemieUniversität KasselKasselFR Germany

Personalised recommendations