Sensorimotor Integration in Robots

  • Carme Torras


The chapter starts with a survey of the different types of sensors used in robotics, to next introduce the degrees of sensorimotor integration required to accomplish some generic tasks. Three such degrees are discussed: Two-stage processing, sensation-action interleaving, and simultaneous operation of sensors and actuators. For the purpose of illustration, a robotic assembly system currently under development at the Institut de Cibernètica is presented, and the way in which the system handles some sample tasks involving various degrees of sensorimotor integration is described. A selected set of general references about the different topics is provided.


Tactile Sensor Multisensory Integration Torque Sensor Sensorimotor Integration Proximity Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen P (1984) Surface descriptions from vision and touch. Proc Int Robotics Conf, Atlanta, pp 394–397Google Scholar
  2. Amat J, Basanez L, Torras C (1983) Sistemas de vision tridimensional en los robots industriales. Mundo Electnónico 130: 71–78Google Scholar
  3. Anandan P (1985) A review of motion and stereopsis research. COINS Tech Rep 85–52 Univ Massachusetts, AmherstGoogle Scholar
  4. Arbib MA, Iberall T, Lyons D (1983) Coordinated control programs for movements of the hand. COINS Tech Rep 83–25 Univ Massachusetts, AmherstGoogle Scholar
  5. Avila F, Torras C (1988) Propuesta de un sistema de planificación y monitorización de la aprehensión de piezas por un robot. 1er Congreso Iberoamericano de Inteligencia Artificial (IBERAMIA’88), Barcelona, pp 405–407Google Scholar
  6. Bajcsy R, Allen P (1984) Converging disparate sensory data. In: Hanafusa H, Inoue H (eds) Proceedings of the 2nd International Symposium on Robotics Research, Kyoto The MIT Press, Cambridge MA, pp 81–86Google Scholar
  7. Balek DJ, Kelley RB (1985) Using gripper mounted infrared proximity sensors for robot feedback control. Proc IEEE Int Conf on Robotics and Automation, St. Louis, pp 282–287Google Scholar
  8. Ballard D, Brown C (1982) Computer vision. Prentice-Hall, Englewood Cliffs NJGoogle Scholar
  9. Barnard S, Fischler MA (1982) Computational stereo. Computing Surveys 14 (4): 553–572CrossRefGoogle Scholar
  10. Barrow HG, Tenenbaum JM (1978) Recovering intrinsic scene characteristics from images. In: Hanson AR, Riseman ER (eds) Computer vision systems. Academic Press, London New York, pp 3–26Google Scholar
  11. Barrow HG, Tenenbaum JM (1981) Computational vision. Proc IEEE 69 (5): 572–595CrossRefGoogle Scholar
  12. Basanez L (1985) Robots inteligentes. Revista del CEAM 193: 11–17Google Scholar
  13. Bastuscheck CM (1984) Look-up table computation for ratio image depth sensor. NYU-Courant Inst Robotics Lab Rep 34Google Scholar
  14. Besl P, Jain R (1985) An overview of three-dimensional object recognition. Computing Surveys 17 (1): 75145CrossRefGoogle Scholar
  15. Binford TO (1982) Survey of model-based image analysis systems. IntJ of Robotics Res 1 (1): 18–64CrossRefGoogle Scholar
  16. Brady M (1982) Computational approaches to image understanding. Computing Surveys 14 (1): 3–71CrossRefGoogle Scholar
  17. Duff MJB, Levialdi S, Preston K, Uhr L (1985) Computing structures and image processing. Academic Press, New YorkGoogle Scholar
  18. Eckmiller R, von der Malsburg C (eds) (1988) Neural computers. NATO ASI Series F Vol 41, Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  19. Ellis RE (1986) A tactile recognition strategy for planar objects. COINS Tech Rep 86–32 Univ Massachusettts, AmherstGoogle Scholar
  20. Espiau B, Catros JY (1980) Use of optical reflectance sensors in robotic applications. IEEE Trans on Systems, Man, and Cybernetics 10 (12): 903–912CrossRefGoogle Scholar
  21. Freund E, Hoyer H (1986) Pathfinding in multi-robot systems: solution and applications. Proc IEEE Int Conf on Robotics and Automation, San Francisco CA, pp 103–111Google Scholar
  22. Grimson WEL (1986) Sensing strategies for disambiguating among multiple objects in known poses. IEEE Journal of Robotics and Automation 2 (4): 196–213CrossRefGoogle Scholar
  23. Hall EL, Tio JBK, McPherson ChA, Sadjadi FA (1982) Measuring curved surfaces for robot vision. Computer 15 (12), 42–54CrossRefGoogle Scholar
  24. Hanson AR, Riseman ER (eds) (1978) Computervision systems. Academic Press, New YorkGoogle Scholar
  25. Hill J, Part WT (1979) Real-time control of a robot with a mobile camera. Proc 9th Int Symp on Industrial Robots, Washington DC, pp 233–246Google Scholar
  26. Hollerbach JM (1982) Computers, brains, and the control of movement. MITAI Lab Memo 686Google Scholar
  27. Hoperoft JE, Schwartz JT, Sharir M (1984) On the complexity of motion planning for multiple independent objects; PSPACE hardness of the warehouseman’s problem. NYU-Courant Inst Robotics Lab Rep 14 Google Scholar
  28. Ikeuchi K (1980) Shape from regular patterns. ProcSth Int Conf on Pattern Recognition, Florida, pp 1032–1039Google Scholar
  29. Ikeuchi K, Horn BKP (1981) Numerical shape from shading and occluding boundaries. Artificial Intelligence 17: 141–185CrossRefGoogle Scholar
  30. Jarvis RA (1983) A perspective on range finding techniques for computer vision. IEEE Trans on Pattern Analysis and Machine Intelligence 5 (2): 122–139CrossRefGoogle Scholar
  31. Kak AC (1985) Depth perception for robots. In: Nof SY (ed) Handbook of industrial robotic. Wiley and Sons, New York, pp 272–319Google Scholar
  32. Kak AC, Albus JS (1985) Sensors for intelligent robots. In: Nof SY (ed) Handbook of industrial robotics. Wiley and Sons, New York, pp 214–230Google Scholar
  33. Kelley R, Birk J, Dessimoz J-D, Martins H, Tella R (1981) Acquiring connecting rod castings using a robot with vision and sensors. Proc 1st Int Conf on Robot Vision and Sensory Controls, Stratford-upon-Avon, UK, pp 169–178Google Scholar
  34. Kelley RB, Bonner S (1985) Understanding, uncertainty and robot task execution. 1st IFAC Symp on Robot Control (SYROCO), Barcelona, pp 43–47Google Scholar
  35. Lougheed RM (1985) Multi-processor architectures for machine vision and image analysis. Proc Int Conf on Parallel Processing Google Scholar
  36. Magee MJ, Boyter BA, Chien C-H, Aggarwal JK (1985) Experiments in intensity-guided range sensing recognition of three-dimensional objects. IFRP Trans on Pattern Analysis and Machine Intelligence 7 (6): 629–636CrossRefGoogle Scholar
  37. Man D (1982) Vision. Freeman, San FranciscoGoogle Scholar
  38. Masuda R (1986) Multifunctional optical proximity sensor using phase modulation. JRobotic Systems 3 (2) 137–147CrossRefGoogle Scholar
  39. McGhee RB (1977) Control of legged locomotion systems. Proc 18th JtAutomatic Control Conf, pp 567–573Google Scholar
  40. Nevins JL, Whitney DE (1977) Research on advanced assembly automation. Computer 10 (12): 24–38CrossRefGoogle Scholar
  41. Nitzan D (1981) Assessment of robotic sensors. Proc ist Int Conf on Robot Vision and Sensory Controls, Stratford-upon-Avon, UK, pp 1–11Google Scholar
  42. Overton KJ (1984) The acquisition, processing, and use of tactile sensor data in robot control. COINS Tech Rep 84–08 Univ Massachusetts, AmherstGoogle Scholar
  43. Pugh A (1983) Robot vision. Springer-Verlag, New York Berl in HeidelbergCrossRefGoogle Scholar
  44. Pugh A (1986) Robot Sensors. IFS Publications Ltd UK and Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  45. Raibert MH, Sutherland IE (1983) Machines that walk. Sci Amer248(1): 44–53Google Scholar
  46. Rembold U, Blume C (1985) Interfacing a vision system with a robot. In: Nof SY (ed) Handbook of industrial robotics. Wiley and Sons, New York, pp 262–271Google Scholar
  47. Rosen CA, Nitzan D (1977) Use of sensors in programmable automation. Computer 10 (22): 12–23CrossRefGoogle Scholar
  48. Ruiz J, Torras C (1988) Extension del algoritmo CF para que contemple ciclos en un cierto tipo de grafos Y/O. 1 er Congreso Iberoamericano de Inteligencia Artificial (IBBRAMIA’88), Barcelona, pp 69–88Google Scholar
  49. Sanfeliu A, Torras C (1984) Cooperación vision-robot en tareas de ensamblaje. II Simposio Naciona! De AutomItica en la Industria, Zaragoza, pp 147–154Google Scholar
  50. Sanfeliu A, Torras C, Font J, Ruiz J (1985) Active-recognition system for the acquisition of overlapping or partially-hidden workpieces. 1st IFAC Symposium on Robot Control, Barcelona, pp 355–359Google Scholar
  51. Sato Y, Kitagawa H, Fujita H (1982) Shape measurement of curved objects using multiple slit-ray projections. IEEE Trans on Pattern Analysis and Machine Intelligence 4 (6): 641–646CrossRefGoogle Scholar
  52. Schwartz JT (1983) Structured light sensors for 3-D robot vision. NYU-Courant Inst Robotics Lab Rep 8Google Scholar
  53. Schwartz JP, Sharir M (1983) On the piano mover’s problem. III Coordinating the motion of several independent bodies: the special case of circular bodies moving amidst polygonal barriers. Int J Robotics Res 2 (3): 46–75CrossRefGoogle Scholar
  54. Thomas F (1987) Sensores tactiles y de proximidad para robots. Revista Espanola de Electrdnica 395: 100–105Google Scholar
  55. Torras C (1984) Concepto y perspectivas de la vision por computador. In: Valle R, Barbera J, Ros F (eds) Inteligencia artificial: introducción y situacidn en Espana. Colección Informes de Fundesco, Madrid, pp 85–103Google Scholar
  56. Torras C (1986) Automatic planning of assembly robot tasks. In: Banatre M (ed) 26mes Journées INRIA -Universitat Politècnica de Catalunya sur Informatique et Robotique, Rapport INRIA, pp 107–118Google Scholar
  57. Ullman S (1979) The interpretation of visual motion. MIT Press, Cambridge MAGoogle Scholar
  58. VanderBrug GJ, Albus JS, Barkmeyer E (1979) A vision system for real time control of robots. Proc 9th Int Symp on Industrial Robots, Washington DC, pp 213–231Google Scholar
  59. Witkin AP (1981) Recovering surface shape and orientation from texture. Artificial Intelligence 17: 17–45CrossRefGoogle Scholar
  60. Yap CK (1984) Coordinating the motion of several discs. NYU-Courant Inst Robotics Lab Tech Rep 16Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Carme Torras
    • 1
  1. 1.Institut de Cibernètica (CSIC-UPC)BarcelonaSpain

Personalised recommendations