The Release of Visual Behavior in Toads: Stages of Parallel/Hierarchical Information Processing

  • Jörg-Peter Ewert

Abstract

The release of toad’s prey-catching behavior (orienting, approaching, fixating and snapping) is mediated by releasing schemas, also called releasing mechanisms. The present neuroethological investigation suggests the neuro-physiological equivalent of a schema as a combination of neurons specified to encode significant coincidences of stimulus cues in space and time. A correspondingly coded command releasing system results from parallel/hierarchical processing in a neural macro-network whose interacting components evaluate visual input under various aspects such as features, background, space, motivation, and past experience. Essential components of prey-related sensorimotor codes are T5.2 neurons. These neurons are tuned to the spatiotemporal properties of moving objects, in such a manner that elongated worm-like moving shapes are preferred and shapes elongated perpendicular to the direction of movement are neglected. Unlike cortical “orientation detectors,” the function of these tectal “configuration discriminators” does not depend on an anisotropic structure; the anisotropy required for configurai discrimination lies in the time domain of the spatiotemporal properties of the moving object itself. Evidence is provided that the direction- and velocity-invariant discriminatory properties of T5.2 neurons are brought about by discrete, parallel evaluations of the spatial and the spatiotemporal stimulus parameters by two-filter operations in pretectal and tectal structures, respectively, and through their subtractive interaction. In amphibians, with motionless eyes, the movement-specific analysis of moving objects seems to take advantage of an economical system that has sidestepped the need for a sophisticated anisotropic cortex-like structure known to involve a huge number of asymmetric processors in order to meet direction-invariant discriminatory operations.

Keywords

Optic Tectum Command Neuron Common Toad Bufo Bufo Stimulus Continuum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akert K (1949) Der visuelle Greifreflex. HelvPhysiol Pharmacol Acta 7: 112–134Google Scholar
  2. Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neuro! 246: 238–253CrossRefGoogle Scholar
  3. Arbib MA (1982) Modelling neural mechanisms of visuomotor coordination in frog and toad. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 342–370CrossRefGoogle Scholar
  4. Arbib MA (1987a) Levels modeling of mechanisms of visually guided behavior. Behav Brain Sci 10: 407. 465Google Scholar
  5. Arbib MA (1987b) Brains, machines, and mathematics Springer-Verlag, New York Berlin Heidelberg London Paris TokyoGoogle Scholar
  6. Autrum H (1959) Das Fehlen unwillkürlicher Augenbewegungen beim Frosch. Naturiviss. 46: 436Google Scholar
  7. Baerends GP (1976) The functional organization of behaviour. Anim Behav 24: 726–738CrossRefGoogle Scholar
  8. Baerends GP (1987) Ethology and physiology: a happy mariage. Behav Brain Sci 10: 369–370CrossRefGoogle Scholar
  9. Barlow HB (1953) Summation and inhibition in the frog’s retina. JPhysiol (Lond)173: 377–407Google Scholar
  10. Barlow HB (1985a) The twelfth Barlett memorial lecture: The role of single neurons in the psychology of perception. Quart J Erp Bio! 37 (A): 121–145Google Scholar
  11. Barlow HB (1985b) The role of nature, nurture, and intelligence in pattern recognition. Pontificiae Academiae Scientiarum Scripta Varia 54. ErAedibusAcademicisin Civitate Vaticana Roma 1985Google Scholar
  12. Bechterev W (1884) Über die Funktion der Vierhügel. PflúgersArch 73: 501–534Google Scholar
  13. Beck A, Ewert J-P (1979) Prey selection by toads (Bufo bufo L) in response to configurational stimuli moving in the visual field z,y-coordinates. J Comp Physiol 129: 207–209CrossRefGoogle Scholar
  14. Bieger D, Neuman RS (1984) Selective accumulation of hydroxytryptavines by frogs tectal neurons. Neurosci 12: 1167–1177CrossRefGoogle Scholar
  15. Birukow G, Meng M (1955) Eine neue Methode zur Prüfung des Gesichtssinnes bei Amphibien. Natuzwissenschaften 42: 652–653CrossRefGoogle Scholar
  16. Borchers H-W (1982) Correlation between behavior patterns and single unit responses from the optic tectum in the freely moving toad (Bufo bufo). In: Trappl R, Ricciardi L, Pask G (eds) Progress in biocybernetics and systems research Vol 9. Hemisphere Publication Corp/McGraw-Hill, Washington London, pp 109–117Google Scholar
  17. Borchers H-W, Ewert J-P (1979) Correlation between behavioral and neuronal activities of toads Bufo bufo (L) in response to moving configurational prey stimuli. BehavProcesses 4: 99–106Google Scholar
  18. Borchers H-W, Pinkwart C (1983) A telemetry system for single unit recording in the freely moving toad (Bufo bufo L) In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 603–612Google Scholar
  19. Borchers H-W, Burghagen H, Ewert J-P (1978) Key stimuli of prey for toads (Bufo bufo L): configuration and movement patterns. J Comp Physiol 128: 189–192CrossRefGoogle Scholar
  20. Borchers H-W, Schürg-Pfeiffer E, Megela AL, Ewert J-P (1983) Single neuron activity in the optic tectum of intact and thalamic-pretectal (TP)-lesioned behaving toads. Neurosci Lett Suppl 14: 36Google Scholar
  21. Brower LP, Brower JVZ, Westcott PW (1960) Experimental studies of mimicry. 5: The reaction of toads (Bufo terrestris) to bumblebees (Bombus americanorum) and their robberfly mimics (Mallophora bomboides), with a discussion of aggressive mimicry. Amer Naturalist 93: 343–356Google Scholar
  22. Brown WT, Ingle D (1973) Receptive field changes produced in frog thalamic units by lesions of the optic tectum. Brain Res 59: 405–409PubMedCrossRefGoogle Scholar
  23. Brzoska J, Schneider H (1978) Modification of prey-catching behavior by learning in the common toad (Bufo b bufo L, Anura, Amphibia): changes in response to visual objects and effects of auditory stimuli. BehavProcesses 3: 125–136Google Scholar
  24. Bullock TH (1961) The problem of recognition in an analyzer made of neurons. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge Mass, pp 717–724Google Scholar
  25. Bullock TH (1983) Implications for neuroethology from comparative neurophysiology. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances invertebrate neuroethology. Plenum Press, New York Burghagen H (1979) Der Einfluß von figuralen, visuellen Mustern auf das Beutefangverhalten verschiedenerAnuren. PhD Thesis, Univ of KasselGoogle Scholar
  26. Burghagen H, Ewert J-P (1982) Question of “head preference” in response to worm-like dummies during prey capture of toads Bufo bufo. Behav Prncesses7: 295–306Google Scholar
  27. Burghagen H, Ewert J-P (1983) Influence of the background for discriminating object motion from self-induced motion in toads Bufo bufo (L). J Comp Physio 1152: 241–249CrossRefGoogle Scholar
  28. Capranica RR (1983) Sensory processing of key stimuli. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances of vertebrate neuroethology. Plenum Press, New York, pp 3–6CrossRefGoogle Scholar
  29. Capranica RR, Moffat AJM (1983) Neurobiological correlates of sound communication in anurans. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances of vertebrate neuroethology. Plenum Press, New York, pp 701–730CrossRefGoogle Scholar
  30. Cervantes-Pérez F (1985) Modelling and analysis of neural networks in the visuomotor system of anuran amphibians. COINS Tech Rep 85–27. Univ of Mass, Amherst MAGoogle Scholar
  31. Chevalier G, Vacher S, Deniau JM (1984) Inhibitory nigral influence on tecto-spinal neurons, a possible implication of basal ganglia in orienting behavior. Pap Brain Res53: 320–326Google Scholar
  32. Clairambault P (1976) Development of the prosencephalon. In: Llinas R, Precht W (ed) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 924–945CrossRefGoogle Scholar
  33. Collett TS (1977) Stereopsis in toads. Nature 267: 349–351PubMedCrossRefGoogle Scholar
  34. Collett TS (1983) Picking a route: do toads follow rules or make plans? In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 321–330CrossRefGoogle Scholar
  35. Collett TS, Udin SB (1983) The role of the toad’s nucleus isthmi in prey-catching behavior. In: Lara R, Arbib MA (eds) Proceedings of the 2nd wortrshop on visuomotor coordination in frog and toad: models and experiments. COINS-Techn Rep 83–19, Univ of Massachusetts, AmherstGoogle Scholar
  36. Corner CM (1987) Sensorimotor functions: what is a command, that a code may yield it? A commentary. Behav Brain Sci 10: 372CrossRefGoogle Scholar
  37. Comer C, Schotland J, Grobstein P (1985) Short and longterm effects of unilateral vestibular lesions on posture and orienting movements in the frog. Soc Neurosci Abstrll: 289Google Scholar
  38. Cott HB (1936) The effectiveness of protective adaptations in the hive-bee, illustrated by experiments on the feeding reactions, habit formation and memory of the common toad (Bufo bufo bufo). Proc Zoo! Soc (London) 1: 113–133Google Scholar
  39. Czihak G, Langer H, Ziegler H (1981) Biologic. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  40. Davis WJ, Gillette R (1978) Neural correlate of behavioral plasticity in command neurons of Pleurobranchaea. Science 199: 801–803CrossRefGoogle Scholar
  41. Davis WJ, Kovac MP (1981) The command neuron and the organization of movement. TINS4: 73–76 DiDomenico R, Eaton RC (1987) Toward a reformulation of the command concept. A commentary. Behav Brain Sci 10: 374–375Google Scholar
  42. Diebschlag E (1935) Zur Kenntnis der GroBhirnfunktionen einiger Urodelen und Anuren. Z Vetgl Physiol 21: 343–394Google Scholar
  43. Dierickx K (1969) Hypothalamo-hypophysial regulation of food intake in Rana temporaria. Gen Comp Endocrino113: 361–366Google Scholar
  44. Dieringer N (1986) Image fading - a problem for frogs? Naturwissenschaften 73: 330Google Scholar
  45. Doty RW (1976) The concept of neural centers. In: Fentress JC (ed) Simpler networks and behavior. Sinauer Ass, Sunderland MassGoogle Scholar
  46. Doty RW (1987) Has the gready toad lost its soul, and if so, what was it? Behav Brain Sci 10: 375CrossRefGoogle Scholar
  47. Eaton RC (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 629–636CrossRefGoogle Scholar
  48. Ebbesson SOE (1984) Evolution and ontogeny of neural circuits. BehavBrain Sci 7: 321–366Google Scholar
  49. Ebbesson SOE (1987) Prey-catching in toads: an exceptional neuroethological model. A commentary. Behav Brain Sci 10: 375–376CrossRefGoogle Scholar
  50. Eibl-Eibesfeldt I (1951) Nahrungserwerb und Beuteschema der Erdkröte (Bufo bufo L). Behaviour4: 1–35Google Scholar
  51. Eibl-Eibesfeldt I (1979) Ethology, the biology of behavior. Holt, Rinehart and Winston Inc, New York Eikmanns K-H (1955) Verhaltensphysiologische Untersuchungen über den Beutefang und dasGoogle Scholar
  52. Bewegungssehen der Erdkröte (Bufo bufoL). ZTietpsychol12: 229–253Google Scholar
  53. Ewert J-P (1967a) Untersuchungen über die Anteile zentralnervöser Aktionen an der taxisspezifischen Ermüdung beim Beutefang der Erdkröte (Bufo bufo L). Z Vergl Physiol57: 263–298Google Scholar
  54. Ewert J-P (1967b) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L) durch elektrische Mittelhirnreizung. Z Vergl Physiol54: 455–481Google Scholar
  55. Ewert J-P (1967c) Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L). PflügersArch 295: 90–98CrossRefGoogle Scholar
  56. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physiol 61: 41–70Google Scholar
  57. Ewert J-P (1969a) Quantitative Analyse von Reiz-Reaktions-Beziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L). Mager sArch 308: 225–243Google Scholar
  58. Ewert J-P (1969b) Das Beutefangverhalten zwischenhirndefekter Erdkröten (Bufo bufo L) gegenüber bewegten und ruhenden visuellen Mustern. PflügersAtch 306: 210–218CrossRefGoogle Scholar
  59. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Vergl Physiol 74: 81–102CrossRefGoogle Scholar
  60. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230: 34–42Google Scholar
  61. Ewert J-P (1980) Neuroethology. An Introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  62. Ewert J-P (1984a) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247–416Google Scholar
  63. Ewert J-P (1984b) Behavioral selectivity based on thalamo-tectal interactions: ontogenetic and phylogenetic aspects in amphibians. A commentary. BehavBrain Sci 7: 337–338Google Scholar
  64. Ewert J-P (1985) The Nico Tinbergen lecture 1983: concepts in vertebrate neuroethology. Anim Behav33: 1–29.Google Scholar
  65. Ewert J-P (1987a) Neuroethology of releasing mechanisms: prey-catching in toads. BehavBrain Sci 10: 337405Google Scholar
  66. Ewert J-P (1987b) Toad’s prey-catching a complex system with heuristic value. Behav Brain Sci 10: 389–398CrossRefGoogle Scholar
  67. Ewert J-P (1987c) The evolutionary aspect of cognitive functions. A commentary to the target article by JR Anderson. Behav Brain Sci 10 (3)Google Scholar
  68. Ewert J-P (1987d) Advantage of modeling in neuroscience. A commentary to the target article by MA Arbib. BehavBrain Sci 10 (3)Google Scholar
  69. Ewert J-P (1987e) Neuroethology: toward a functional analysis of stimulus-response mediating and modulating neural circuitries. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man, Vol I. Martinus Nijhoff, Dordrecht, pp 177–200Google Scholar
  70. Ewert J-P (1988) Instinct, current concepts. In: Adelman G (ed) Neuroscience year 1988: The yearbook of the enzyclopedia of neuroscience. Birkhäuser, BostonGoogle Scholar
  71. Ewert J-P, Borchers H-W (1971) Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L). Z Vergl Physiol 71: 165–189CrossRefGoogle Scholar
  72. Ewert J-P, Burghagen H (1979a) Ontogenetic aspects on visual ‘size-constancy’ phenomena in the midwife toad Alytes obstetricans (Laur). Brain Behav Evo! 16: 99–112CrossRefGoogle Scholar
  73. Ewert J-P, Burghagen H (1976b) Configurational prey selection by Bufo, Alytes, Bombina, and Hyla. Brain BehavEvol 16: 157–175CrossRefGoogle Scholar
  74. Ewert J-P, Finkenstädt T (1986) Modulation of tectal functions by prosencephalic loops in amphibians. A commentary. BehavBrain Sci 10: 122–123Google Scholar
  75. Ewert J-P, Gebauer L (1973) Größenkonstanzphänomene im Beutefangverhalten der Erdkröte (Bufo bufo L). J Comp Physiol 85: 303–315CrossRefGoogle Scholar
  76. Ewert J-P, Härter H-A (1968) Inhibitionsphänomene im visuellen System der Erdkröte. Naturwissenschaften 55: 237CrossRefGoogle Scholar
  77. Ewert J-P, Härter H-A (1969) Der hemmende Einfluß gleichzeitig bewegter Beuteattrappen auf das Beutefangverhalten der Erdkröte. Z Vergl Physiol 64: 135–153CrossRefGoogle Scholar
  78. Ewert J-P, Hock FJ (1972) Movement sensitive neurones in the toad’s retina. Erp Brain Res 16: 41–59Google Scholar
  79. Ewert J-P, Kehl W (1978) Configurational prey-selection by individual experience in the toad Bufo bufo. J Comp Physiol 126: 105–114CrossRefGoogle Scholar
  80. Ewert J-P, Rehn B (1969) Quantitative Analyse der Reiz-Reaktionsbeziehungen bei visuellem Auslösen des Fluchtverhaltens der Wechselkröte (Bufo viridis Laur). Behaviour35: 212–234Google Scholar
  81. Ewert J-P, Seelen W v (1974) Neurobiologie und System-Theorie eines visuellen Muster-Erkennungsmechanismus bei Kröten. Kybernetik 14: 167–183PubMedCrossRefGoogle Scholar
  82. Ewert J-P, Traud R (1979) Releasing stimuli for antipredator behaviour in the common toad Bufo bufo (L). Behaviour 68: 170–180CrossRefGoogle Scholar
  83. Ewert J-P, Wietersheim A v (1974a) Musterauswertung durch tectale und thalamus/praetectal Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol 92: 131–148CrossRefGoogle Scholar
  84. Ewert J-P, Wietersheim A v (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physiol 92: 149–160CrossRefGoogle Scholar
  85. Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition and Eizitation im Beutefangverhalten der Erdkröte (Bufo bufo L). Z vergl Physiol 68: 84–110CrossRefGoogle Scholar
  86. Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/Praetectum/Tectum: retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physial 92: 343–356CrossRefGoogle Scholar
  87. Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey feature detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol 126: 43–47CrossRefGoogle Scholar
  88. Ewert J-P, Arend B, Becker V, Borchers H-W (1979a) Invariants in configurational prey selection by Bufo bufo (L). Brain Behav Evo! 16: 38–51CrossRefGoogle Scholar
  89. Ewert J-P, Borchers H-W, Wietersheim A v (1979b) Directional sensitivity, invariance, and variability of tectal T5 neurons in response to moving configurational stimuli in the toad Bufo bufo (L). J Comp Physio11 32: 191–201CrossRefGoogle Scholar
  90. Ewert J-P, Burghagen H, Albrecht L, Kepper J (1982) Effects of background structure on the discrimination of configurational moving prey dummies by toads Bufo bufo (L). J Comp Physiol 147: 179–187CrossRefGoogle Scholar
  91. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983a) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 413–475CrossRefGoogle Scholar
  92. Ewert J-P, Capranica RR, Ingle DJ (1983b) (eds) Advances in vertebrate neuroethology. Plenum Press, New YorkGoogle Scholar
  93. Ewert J-P, Schürg-Pfeiffer E, Weerasuriya A (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Natuiwissenschaften 71: 590–591CrossRefGoogle Scholar
  94. Ewert J-P, Matsumoto N, Schwippert WW (1985) Morphological identification of prey-selective neurons in the grass frog’s optic tectum. Naturwissenschaften 72: 661–662PubMedCrossRefGoogle Scholar
  95. Feigenbaum J, Cahusac P, Rolls ET, Miyashita Y, Niki H (1986) Neuronal activity in the parahippocampal gyrus of the behaving primate. Int Congr of NeuroethologyAbstrl: 83Google Scholar
  96. Fentress JC (1983) The analysis of behavioral networks. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 939–968CrossRefGoogle Scholar
  97. Fentress JC (1987) Ethological invariants: boxes, rubberbands, and biological processes. A commentary. Behav Brain Sci 10: 377–378CrossRefGoogle Scholar
  98. Fernald RD (1987) More than meets the eye. A commentary. Behav Brain Sci 10: 378–379CrossRefGoogle Scholar
  99. Finkenstädt T (1981) Der Einfluß des Tectum opticum and Vorderhirns auf die Steuerung des Beutefang-und Fluchtverhaltens beim Salamander Salamandra salamandra (L): eine quantitative Untersuchung mit Hilfe von Ableitungs-, Läsions-and Hirnreizungstechniken. PhD Thesis, Univ of KasselGoogle Scholar
  100. Finkenstädt T (1987) Verschaltung, Interaktion and Funktion visuell beeinflußbarer Hirngebiete bei Amphibien. Habil Thesis, Univ KasselGoogle Scholar
  101. Finkenstädt T, Ewert J-P (1983a) Processing of area dimensions of visual key stimuli by tectal neurons in Salamandra salamandra. J Comp Physiol 153: 85–98CrossRefGoogle Scholar
  102. Finkenstädt T, Ewert J-P (1983b) Visual pattern discrimination through interactions of neural networks: a combined electrical brain stimulation, brain lesion, and extracellular recording study in Salamandra salamandra. J Comp Physiol 153: 99–110CrossRefGoogle Scholar
  103. Finkenstädt T, Ewert J-P (1985) Glucose utilization in the toad’s brain during anesthesia and stimulation of the ascending reticular arousal system: a 14C-2- deoxyglucose study. Naturwiiss. 72: 161–162CrossRefGoogle Scholar
  104. Finkenstädt T, Ewert J-P (1987) Visual associative conditioning in the toad: a 2-deoxyglucose study. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. G Thieme-Verlag, Stuttgart Finkenstädt T, Ewert J-P (1988) Stimulus-specific long-term habituation of visually guided orienting behavior toward prey in toads: a 14C–2DG study. J Comp Physiol 163: 1–11Google Scholar
  105. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C–2DG autoradiographs. J Comp Physiol 156: 433–445CrossRefGoogle Scholar
  106. Finkenstädt T, Adler NT, Allen TO, Ewert J-P (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a 14C–2DG study. J Comp Physiol 158: 457–467CrossRefGoogle Scholar
  107. Fite KV, Scalia F (1976) Central visual pathways in the frog. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York San Francisco London, pp 87–118Google Scholar
  108. Fite KV, Hayden D, Montgomery N, Bengston L (1983) Visual orienting responses following selective reduction of optic input to AOS and/or optic tectum in frog. Soc Neurosel Abstr 9: 818Google Scholar
  109. Foreman N, Stevens R (1987) Relationships between the superior colliculus and hippocampus: neural and behavioral considerations. BehavBrains Sci 10: 101–151Google Scholar
  110. Freeman JA, Norden JJ (1984) Neurotransmitters in the optic tectum of non mammalians. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 469–546Google Scholar
  111. Freisling J (1948) Studien zur Biologie und Psychologie der Wechselkröte (Bufo viridis Laur). Österreichische Zool Z (Wien)1: 383–440Google Scholar
  112. Frost BJ (1982) Mechanisms for discriminating object motion from self-induced motion in the pigeon. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. The MIT Press, Cambridge Mass, pp 177–196Google Scholar
  113. Gaillard F, Galand Q (1979) Diencephalic binocular wide field neurons in the frog. Pap Brain Res 34: 511–520Google Scholar
  114. Gans C (1961) A bullfrog and its prey. Nat Hist70: 26–37Google Scholar
  115. Gans C, Gorniak GC (1982) Functional morphology of lingual protrusion in marine toads (Bufo marinus). Amer J Ana t 163: 195–222CrossRefGoogle Scholar
  116. Garner WR (1966) To perceive is to know. AmerPsychol2l: 11–19Google Scholar
  117. Gaze RM (1958) The representation of the retina on the optic lobe of the frog. Quart J Exp Physiol 43: 209–314PubMedGoogle Scholar
  118. Gerhardt HC (1981) Mating call recognition in the green tree frog (Hyla cinerea): importance of two frequency bands as a function of sound pressure level. J Comp Physiol 144: 9–16CrossRefGoogle Scholar
  119. Gibson JJ (1950) The perception of the visual world. Houghton, Boston MassGoogle Scholar
  120. Gibson JJ (1951) What is form? Psycho! Rev 58: 403–412CrossRefGoogle Scholar
  121. Gillette R, Kovac MP, Davis WJ (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network they excite. Science 199: 798–801PubMedCrossRefGoogle Scholar
  122. Gordon J, Hood DC (1976) Anatomy and physiology of the frog retina. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Plenum Press, New York, pp 29–86Google Scholar
  123. Grobstein P, Comer C, Kostyk SK (1983) Frog prey capture behavior between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 331–347CrossRefGoogle Scholar
  124. Gruberg ER, Lettvin JY (1980) Anatomy and physiology of a binocular system in the frog Rana pipiens Brain Res 192: 313–325CrossRefGoogle Scholar
  125. Gruberg ER, Udin SB (1978) Topographic projections between the nucleus isthmi and the tectum of the frog Rana pipiens. J Comp Neural 179: 487–500CrossRefGoogle Scholar
  126. Grüsser-Cornehls U (1984) The neurophysiology of the amphibian optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 211–245Google Scholar
  127. Griisser O-J, Grüsser-Cornehls U (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physio 159: 1–24CrossRefGoogle Scholar
  128. Grösser O-J, Grösser-Cornehls U (1970) Die Neurophysiologie visuell gesteuerter Verhaltensweisen bei Anuren. Verh Deutsch Zoo! Ges Köln 64: 201–218Google Scholar
  129. Griisser O-J, Griisser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 298–385Google Scholar
  130. Guha K, Jorgensen CB, Larsen LO (1980) Relationship between nutritional state and testes function, together with the observations on patterns of feeding, in the toad. JZool (London) 192: 147–155CrossRefGoogle Scholar
  131. Guthrie DM (1987) (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester Hanke W (1976) Neuroendocnnology. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 975–1020Google Scholar
  132. Hamad S (1987a) Psychophysical and cognitive aspects of categorical perception: a critical overview. In: Hamad S (ed) Categorical perception. Cambridge University Press, Cambridge MassGoogle Scholar
  133. Hamad S (1987b) Category induction and representation. In: Hamad S (ed) Categorical perception. Cambridge University Press, Cambridge MassGoogle Scholar
  134. Hartline HK (1940) The receptive fields of optic nerve fibers. AmerJPhysiol130: 690–699 Hebb DO (1949) The organization of behavior. Wiley, New YorkGoogle Scholar
  135. Hebb DO (1959) A neuropsychological theory. In: Koch S (ed) Psychology: a study of a science Vol 1; McGraw-Hill, New YorkGoogle Scholar
  136. Herbst G (1981) Quantitative Untersuchungen zur Frage der Invariantenbildung beim Beuteerkennen verschiedener Subspecies der Erdkröte (Bufo bufo bufo und Bufo bufo spinosus). Staatsexam Thesis, Univ KasselGoogle Scholar
  137. Herrick CJ (1933) The amphibian forebrain. VIII: Cerebral hemispheres and pallial primordia. J Comp Neurol 58: 737–759CrossRefGoogle Scholar
  138. Heusser H (1959) Die Lebensweise der Erdkröte Bufo bufo (L); Nahrungsaufnahme und Pigmentierung der Daumenschwielen im Jahresverlauf. Biol Zb/88: 457. 467Google Scholar
  139. Heusser H (1960) Instinkterscheinungen an Kröten unter besonderer Berücksichtigung des Fortpflanzungsinstinktes der Erdkröte (Bufo bufo L). Z Tierpsychol 17: 67–81Google Scholar
  140. Himstedt W (1982) Prey selection in salamanders. In: Ingle DJ, Goodale MA, Mansfield RJW (eds) Analysis of visual behavior. The MIT Press, Cambridge Mass, pp 47–66Google Scholar
  141. Himstedt W, Freidank U, Singer E (1976) Die Veränderung eines Auslösemechanismus im Beutefang-verhalten während der Entwicklung von Salamandra salamandra (L). Z Tierpsychol 41: 235–243PubMedCrossRefGoogle Scholar
  142. Hinde RA (1954) Changes in responsiveness to a constant stimulus. Behaviour2: 41–54Google Scholar
  143. Hinsche G (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zool Anz 111: 113–122Google Scholar
  144. Holst E v, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37: 464–476CrossRefGoogle Scholar
  145. Hood DC, Gordon J (1981) The frog ganglion cell: not a feature detector and not a monkey cortical cell. Perception 10: 421–422PubMedCrossRefGoogle Scholar
  146. House D (1984) Neural models of depth perception in frog and toad. PhD Thesis, Univ Mass Amherst Hoyle G (ed) (1977) Identified neurons and behavior of arthropods. Plenum Press, New York:Google Scholar
  147. Hoyle G (1984) The scope of neuroethology. Behav Brain Sci 7: 367–412CrossRefGoogle Scholar
  148. Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J Physiol 160: 106–154PubMedGoogle Scholar
  149. Hubel DH, Wiesel TN (1965) Receptive fields and functional architecture in two non-striate visual areas (18 and 19) of the cat. JNeurophysiol 28: 229–289Google Scholar
  150. Huber F, Markl H (1983) (eds) Neuroethology and behavioral physiology. Springer-Verlag, BerlinGoogle Scholar
  151. Hume D (1902) Enquiries concerning the human understanding and concerning the principles of morals (Selby-Bigge LA, ed). Clarendon Press, OxfordGoogle Scholar
  152. Ingle D (1968) Visual releasers of prey-catching behavior in frogs and toads. Brain BehavEvol 1: 500–518CrossRefGoogle Scholar
  153. Ingle D (1971) Prey-catching behavior of anurans toward moving and stationary objects. Vision Res Suppl 3: 447–456CrossRefGoogle Scholar
  154. Ingle D (1973) Disinhibition of tectal neurons by pretectal lesions in the frog. Science 180: 422–424PubMedCrossRefGoogle Scholar
  155. Ingle D (1975) Selective visual attention in frogs. Science 188: 1033–1035CrossRefPubMedGoogle Scholar
  156. Ingle D (1976) Spatial vision in anurans. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 119–140Google Scholar
  157. Ingle D (1977) Detection of stationary objects by frogs (Rana pipiens) after ablation of optic tectum. J Comp Physiol Psycho! 91: 1359–1364CrossRefGoogle Scholar
  158. Ingle D (1980) Some effects of pretectum lesions on the frog’s detection of stationary objects. BehavBrain Rest 139–163Google Scholar
  159. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Evert J-P, Capranica RRGoogle Scholar
  160. Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 177–226Google Scholar
  161. Ingle DJ, Quinn S (1982) Retrograde labelling of neurons of known behavioral function in frog tectum. Soc Neurosci Abstr8: 406Google Scholar
  162. John ER, Schwartz EL (1978) The neurophysiology of information processing and cognition. Ann Rev Psycho! 29: 1–29CrossRefGoogle Scholar
  163. Kandel ER, Krasne FB, Strumwasser F, Truman JW (eds) (1979) Cellular mechanisms in the selection and modulation of behavior. Neurosci Research Program Bulletin, Vol 17. MIT Press, Cambridge MassGoogle Scholar
  164. Karten FU, Reiner A, Brecha N (1982) Laminar organization and origins of neuropeptides in the avian retina and optic tectum. In: Liss AR (ed) Cytological methods in neuroanatomy Katte O, HoffmannGoogle Scholar
  165. K-P (1980) Direction specific neurons in the pretectum of the frog (Rana esculenta). J Comp Physiol 140: 53–57CrossRefGoogle Scholar
  166. Kicliter E, Ebbesson SOE (1976) Organization of the ‘non olfactory’ telencephalon. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 946–972CrossRefGoogle Scholar
  167. Kondrashev SL (1976) Influence of the visual stimulus size on the breeding behavior of anuran males. Akademija Nank Zoologiceski~ Jurnal SS: 1576–1579Google Scholar
  168. Kondrashev SL (1987) Neuroethology and color vision in amphibians. Behav Brain Sci 10: 385CrossRefGoogle Scholar
  169. Kondrashev SL, Dimentman AM (1978) Role of dorsal thalamus in the organization of visually-mediated behavior in amphibians. In: Orlov OY (ed) Mechanisms of vision of animals. Nauka, Moscow Konishi M (1985) Birdsong: from behavior to neuron. Ann Rev Neurosci 8: 125–170Google Scholar
  170. Konorski J (1967) Integrative activity of the brain. University of Chicago Press, Chicago jllGoogle Scholar
  171. Kostyk SK, Grobstein P (1982) Visual orienting deficits in frogs with various unilateral lesions. Behav Brain Res 6: 379–388Google Scholar
  172. Kuljis RO, Karten FU (1982) Laminar organization of peptide-like immunoreactivity in the anuran optic tectum. J Comp Neurol 212: 188–201CrossRefPubMedGoogle Scholar
  173. Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 3–39CrossRefGoogle Scholar
  174. Laming PR, Ewert J-P (1983) The effects of pretectal lesions on neuronal, sustained potential shift and electroencephalographic responses of the toad tectum to presentation of a visual stimulus. Comp Biochem Physiol 76: 247–252CrossRefGoogle Scholar
  175. Lara R, Arbib MA (1985) A model of the neural mechanisms responsible for pattern recognition and stimulus specific habituation in toads. Biol Cybern 51: 223–237PubMedCrossRefGoogle Scholar
  176. Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 371–393CrossRefGoogle Scholar
  177. Lazar G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung20: 171–183 I.47ar G (1971) The projection of the retinal quadrants on the optic centers in the frog: a terminal degeneration study. Acta Morph Acad Sci Hungl9: 325–334Google Scholar
  178. Lazar G (1973) Role of accessory optic system in the optokinetic nystagmus of the frog. Brain, Behav Evol 5: 443–460Google Scholar
  179. Lazar G (1979) Organization of the frog visual system. In: Lissak R (ed) Recent development of biology in Hungary Vol B. Akademiai Kiado, BudapestGoogle Scholar
  180. Lazar G (1984) Structure and connections of the frog optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 185–210Google Scholar
  181. Lazar G, Toth P, Csank G, Kicliter E (1983) Morphology and location of tectal projection neurons in frogs. A study with HRP and cobalt-filling. J Comp Neurol 215: 108–120PubMedCrossRefGoogle Scholar
  182. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Engin 47: 1940–1951Google Scholar
  183. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1961) Two remarks on the visual system of the frog. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge Mass, pp 757–776Google Scholar
  184. Lorenz K (1935) Der Kumpan in der Umwelt des Vogels. Der Artgenosse als auslösendes Moment sozialer Verhaltensweisen. J Ornithol 83: 137–213, 289–413Google Scholar
  185. Lorenz K (1943) Die angeborenen Formen möglicher Erfahrung. Z Tierpsychol5: 235–409Google Scholar
  186. Manning A (1979) An introduction to animal behaviour. 3rd edn. Springer-Verlag, Berlin Heidelberg Masino T, Grobstein P (1985) The organization of tectal projections to the ventral midbrain in Rana pipiens Soc Neurosci Abstr 11: 289Google Scholar
  187. Matsumoto N, Antal M (1984) Physiological and morphological study of prey and predator detecting neurons in the frog tectum. Proc 6th Ann ConfJapan Soc Gen Comp Physiol Abstr 6: 169Google Scholar
  188. Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol 159: 721–739CrossRefGoogle Scholar
  189. Maturana HR, Lettvin JY, McCulloch WS, Pitts WH (1960) Anatomy and physiology of vision in the frog (Rana pipiens). J Gen Physiol 43: 129–176PubMedCrossRefGoogle Scholar
  190. Megela AL, Borchers H-W, Ewert J-P (1983) Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo. Naturwissenschaften 70: 100–101CrossRefGoogle Scholar
  191. Milson JA, Mitchell JF (1977) The action of amino acids on evoked responses in the frog optic tectum. BrJ Pharmacol59: 484 PGoogle Scholar
  192. Mountcastle VB (1957) Modality and topographic properties of single neurons of cat’s somatic sensory cortex. JNeurophysiol 20: 403–434Google Scholar
  193. Neary TJ, Northcutt RG (1983) Nuclear organization of the bullfrog diencephalon. J Comp Neural 213: 262–278CrossRefGoogle Scholar
  194. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–255CrossRefGoogle Scholar
  195. Paillard J (1987) Cognitive versus sensorimotor encoding of spatial information. In: Ellen P, Thinus-Blanc C (eds) Cognitive processes and spatial orientation in animal and man Vol IL Martinus Nijhoff Publ, DordrechtGoogle Scholar
  196. Parent A (1973) Distribution of monoamine-containing neurons in the brainstem of the frog, Rana temporaria. J Morphol 139: 67–78CrossRefGoogle Scholar
  197. Porter KR (1972) Herpetology. WB Saunders Comp, Philadelphia London TorontoGoogle Scholar
  198. Ramon y Cajal S (1896) Die Retina der Wirbeltiere (transi by R Greef). JF Bergmann Wiesbaden. [Engl trans! by Rodieck RW (1973) The vertebrate retina WH Freeman and Comp, pp 773–904]Google Scholar
  199. Rehn B (1977) Cerebrate Repräsentation des Fluchtverhaltens der Erdkröte (Bufo bufo L). PhD Thesis, Technical Univ DarmstadtGoogle Scholar
  200. Reiner A, Brauth SE, Karten HJ (1980) Basal ganglionic pathways to the tectum: studies in reptiles. J Comp Neural 193: 565–589CrossRefGoogle Scholar
  201. Reiner A, Karten HJ, Brecha NC (1982) Enkephalin-mediated basal ganglia influences over the optic tectum: immunohistochemistry of the tectum and the lateral spirifrom nucleus in pigeon. J Comp Neurol 208: 37–53PubMedCrossRefGoogle Scholar
  202. Reiner A, Brauth SE, Karten HJ (1984) Evolution of the amniote basal ganglia. TINS7: 320–325Google Scholar
  203. Rolls ET (1987a) A neurophysiological systems approach to neuroethology. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester, pp 231–259Google Scholar
  204. Rolls ET (1987b) Neuronal activity underlying perception and learning in the primate. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme Verlag, Stuttgart New York, pp 49–51Google Scholar
  205. Roth G (1982) Responses in the optic tectum of the salamander Hydromantes italicus to moving prey stimuli. Erp Brain Res 45: 386–392CrossRefGoogle Scholar
  206. Roth G (1987) Visual behavior in salamanders Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  207. Roth G, Jordan M (1982) Response characteristics and stratification of tectal neurons in the toad Bufo bufo (L). Erp Brain Res 45: 393–398CrossRefGoogle Scholar
  208. Roucoux A, Crommelinck M (1987) Sensorimotor maps in the tectum. BehavBrain Sci 10: 386–387Google Scholar
  209. Rubinson E (1968) Projections of the tectum opticum of the frog. Brain BehavEvo! 1: 529–561CrossRefGoogle Scholar
  210. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo (L). J Comp Physiol 157: 739–748CrossRefGoogle Scholar
  211. Satou M, Matsushima T, Ueda K (1984) Neuronal pathways from the tectal “snapping-evoking area” to the tongue muscle controlling motoneurons in the Japanese toad: evidence of the intervention of excitatory interneurons. Zoo! Sci 1: 829–832Google Scholar
  212. Scalia F (1976) The optic pathway of the frog nuclear organization and connections. In: Llinas R, Precht W (eds) Frog neurobiolog. Springer-Verlag, Berlin Heidelberg New York, pp 386–406CrossRefGoogle Scholar
  213. Scheich H (1983) Sensorimotor interfacing. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Academic Press, New York, pp 7–14CrossRefGoogle Scholar
  214. Schleidt WM (1961) Reaktionen von Truthühnern auf fliegende Raubvögel und Versuche zur Analyse ihrer AAMs. Z Tieipsychol 18: 534–560CrossRefGoogle Scholar
  215. Schleidt WM (1962) Die historische Entwicklung der Begriffe “Angeborenes auslösendes Schema” und “Angeborener Auslösemechanismus” in der Ethologie. Z Tierpsychol19: 697–722Google Scholar
  216. Schneider D (1954) Beitrag zu einer Analyse des Beute-und Fluchtverhaltens einheimischer Anuren. Biol Z6173: 225–282Google Scholar
  217. Schneider GE (1969) Two visual systems. Science 163: 895–920PubMedCrossRefGoogle Scholar
  218. Schürg-Pfeiffer E (1979) Quantitative neurophysiologische Untersuchungen zur Frage nach Gestaltdetektoren im visuellen System des Frosches Rana temporaria. PhD Thesis, Univ of Kassel Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of Gestalt preyGoogle Scholar
  219. features in the frog Rana temporaria. J Comp Physio! 141:139–152Google Scholar
  220. Schürg-Pfeiffer E, Ewert J-P (1988) Correlation between responses of prey-selective T5.2 neurons and prey-catching in freely moving toads (submitted)Google Scholar
  221. Schúrg-Pfeiffer E, Finkenstädt T, Cromarty A, Ewert J-P (1989) Change of response properties of a T5.2 neuron in the course of pretectal lesions in the toad (submitted)Google Scholar
  222. Seelen W v (1970) Zur Informationsverarbeitung im visuellen System der Wirbeltiere I/II. Kybernetik 7: 43–60; 89–106Google Scholar
  223. Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs Rana pipiens. Herpetologia 34: 167–172Google Scholar
  224. Stellar E (1954) The physiology of motivation. Psycho! Rev61: 5–22Google Scholar
  225. Stevens KH (1987) Implicit versus explicit computation. A commentary. BehavBrain Sci 10: 387–388Google Scholar
  226. Suga N (1984) The extent to which biosonar information is represented in the bat auditory cortex. In: Edelman GM, Gall WE, Cowan WM (eds) Dynamic aspects of neocortical function. Wiley and Sons, New YorkGoogle Scholar
  227. Székely G (1973) Anatomy and synaptology of the optic tectum. In: Jung R (ed) Handbook of sensory physiology Vol VII/3B. Springer-Verlag, Berlin Heidelberg New York, pp 1–26Google Scholar
  228. Székely G, Czeh G (1976) Organization of locomotion. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 765–792CrossRefGoogle Scholar
  229. Székely G, Lazar G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar
  230. Szentâgothai J (1967) The anatomy of complex integration units in the nervous system. In: Lissak K (ed) Recent developments of neurobiology in Hungary. Vol 1: Results in neuroanatomy, neurochemistry, neuropharmacologyand neurophysiology. Akademiai Kiado, BudapestGoogle Scholar
  231. Szentâgothai J, Arbjb MA (1974) Conceptual models of neural organization. Neurosciences Research Program Bulletin Vol 12. MIT Press, Cambridge MassGoogle Scholar
  232. Tinbergen N (1948) Social releasers and the experimental method required for their study. Wilson Bulletin 60: 6–52Google Scholar
  233. Tinbergen N (1951) The study of instinct. Clarendon Press, OxfordGoogle Scholar
  234. Tinbergen N, Kuenen DJ (1939) Ober die auslösenden and richtungsgebenden Reizsituationen der Sperrbewegung von jungen Drosseln (Turdus merula merula L and Turdus ericetorum ericetorum Turdon). Z Tierpsychol 3: 37–60CrossRefGoogle Scholar
  235. Toth P, Csank G, LizAr G (1985) Morphology of the cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. JHirnforsch 26: 365–383Google Scholar
  236. Trachtenberg MC, Ingle D (1974) Thalamo-tectal projections in the frog. Brain Research 79: 419–430PubMedCrossRefGoogle Scholar
  237. Traud R (1983) Einiluß von visuellen Reizmustern auf die juvenile Erdkinte (Bufo bufo L). PhD Thesis, Univ of KasselGoogle Scholar
  238. Tsai H-J, Ewert J-P (1987) Edge preference of retinal and tectal neurons in common toads (Bufo bufo) in response to worm-like moving stripes: the question of behaviorally relevant “position indicators.” J Comp Physiol 161: 295–304Google Scholar
  239. Tsai H-J, Ewert J-P (1988) Influence of stationary and moving textured backgrounds on the response of visual neurons in toads (Bufo bufo L). Brain BehavEvol 32: 27–38CrossRefGoogle Scholar
  240. Uexküll J v (1909) Umwelt and Innenwelt der Tiere. Springer-Verlag, BerlinGoogle Scholar
  241. Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–627CrossRefGoogle Scholar
  242. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad’s optic tectum and sensori-motor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429–434CrossRefGoogle Scholar
  243. Weerasuriya A, Ewert J-P (1983) Afferents of some dorsal retino-recipient areas of the brain of Bufo bufo. Soc Neurosci Abstr 9: 536Google Scholar
  244. Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish, Procambarus clarkii (Girard). Comp Biochem Physiol1 2: 509–525CrossRefGoogle Scholar
  245. Wietersheim A v, Ewert J-P (1978) Neurons of the toad’s (Bufo bufo L) visual system sensitive to moving configurational stimuli: a statistical analysis. J Comp Physiol 126: 35–42CrossRefGoogle Scholar
  246. Wilczynski W, Northcutt RG (1977) Afferents to the optic tectum of the leopard frog: an HRP study. J Comp Neural 173: 219–229CrossRefGoogle Scholar
  247. Wilczynski W, Northcutt RG (1983a) Connections of the bullfrog striatum: efferent projections. J Comp Neurol 214: 333–343PubMedCrossRefGoogle Scholar
  248. Wilczynski W, Northcutt RG (1983b) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214: 321–332PubMedCrossRefGoogle Scholar
  249. Wurtz RH (1979) Modulation of the primate visual system by attention and readiness to respond. In: Kandel ER, Krasne FB, Strumwasser F, Truman JW (eds) Cellular mechanisms in the selection and modulation of behavior. Neurosci Research Program Bulletin Vol 17. MIT Press, Cambridge MassGoogle Scholar
  250. Zucker I (1983) Motivation, biological clocks, and temporal organization of behavior. In: Satinoff E, Teitelbaum P (eds) Handbook of behavioral neurobiology, Vol 6. Plenum Press, New YorkGoogle Scholar
  251. Zusne L (1970) Visual perception of form. Academic Press, New York LondonGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jörg-Peter Ewert
    • 1
  1. 1.Abteilung Neuroethologie, Fachbereich Biologie/ChemieUniversität KasselKasselFR Germany

Personalised recommendations