In Search of the Motor Pattern Generator for Snapping in Toads

  • Ananda Weerasuriya


The hypothesis that a neuronal network interposed between the output elements of the optic tectum, and hypoglossal and other cranial motoneurons subserves ballistic snapping in anurans is critically examined. Morphological and electrophysiological data have not revealed a direct monosynaptic connection between the optic tectum and hypoglossal motoneurons. On the contrary, the available evidence supports the presence of interneurons mediating impulse traffic from the tectum to cranial motoneurons. It is argued that these interneurons are part of a motor pattern generator (MPG). The afferent connections of the bulbar reticular formation (RetF) and the hypoglossal nucleus were studied using the horseradish peroxidase method. The results substantiate the hypothesis that a vital component of the neural substrate for snapping generation is located in the medial RetF (MRF), has access to the motoneurons relevant for snapping, and receives inputs from the tectum and the torus semicircularis. Bilateral tectal and toral inputs to MRF suggest that the MPG consists of two unilateral subunits each having independent access to the relevant motoneurons. This is consistent with the observations that toads with unilateral tectal, or medullary lesions are still capable of snapping. Connections between the nucleus of the solitary tract and the hypoglossal nucleus may be important for elementary bulbar reflexes and manipulation of prey within the mouth. Interconnections between hypoglossal nucleus and other craniomotor nuclei might play a role in the coordination of tongue and jaw musculature necessary for precise timing of the ballistic snapping movement. From a review of the available evidence, a more detailed scheme of the MPG is proposed.


Medulla Oblongata Motor Nucleus Optic Tectum Hypoglossal Nucleus Bufo Bufo 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arbib MA (1988) Levels of modelling of mechanisms of visually guided behavior. Behaw Brain Sci 10 (in press)Google Scholar
  2. Bieger D, Neuman RS (1984) Selective accumulation of hydroxytroptamines by frog tectal neurons. Neurosci 12: 1167–1177CrossRefGoogle Scholar
  3. Bloom FE (1979) Chemical integrative processes in the central nervous system. In: Schmidt FO, Worden FG (eds) The neurosciences: fourth study program. MIT Press, Cambridge MassGoogle Scholar
  4. Braak H (1970) Biogene Amine im Gehirn vom Frosch (Rana esculenta). Z Zellforsch 106: 269–308CrossRefGoogle Scholar
  5. Brenowitz GL, Collins WF Jr, Erulkar SD (1983) Dye and electrical coupling between frog motoneurons. Brain Res 274: 371–375PubMedCrossRefGoogle Scholar
  6. Brookhart JM, Fadiga E (1960) Potential fields initiated during monosynaptic activation of frog motoneurones. JPhysiol (Lond)150: 633–655Google Scholar
  7. Burghagen H (1979) Der Einfluß von figuralen visuellen Mustern auf das Beutefangverhalten verschiedenerAnuren. Ph.D. Thesis, Univ KasselGoogle Scholar
  8. Cajal SR y (1909) Histologie du Systeme nerveux de f homme et des vertebres Maloine, ParisGoogle Scholar
  9. Cardona A, Rudomin P (1983) Activation of brain stem serotonergic pathways decreases homosynaptic depression of monosynaptic responses of frog spinal motoneurons. Brain Res 280: 373–378PubMedCrossRefGoogle Scholar
  10. Comer C, Grobstein P (1981a) Tactually elicited prey acquisition behavior in the frog, Rana pipiens, and a comparison with visually elicited behavior. J Comp Physiol 142: 141–150CrossRefGoogle Scholar
  11. Comer C, Grobstein P (1981b) Involvement of midbrain structure in tactually and visually elicited prey acquisition behavior in the frog, Rana pipiens J Comp Physio1142: 151–160Google Scholar
  12. DeOlmos J, Heimer L (1977) Mapping of collateral projections with the HRP method. Neurosci Lett 6: 107–114CrossRefGoogle Scholar
  13. Dole JW, Rose BB, Tachiki KH (1981) Western toads (Bufo boreas) learn odor of prey insects. Herpetologica 37: 63–68Google Scholar
  14. Doty RW, Richmond WH, Storey AT (1967) Effect of medulla lesions on coordination of deglutition. Pxp Neuro 17: 91–106Google Scholar
  15. Ebbesson SOE, Hansel M, Scheich H (1981) An ‘on the slide’ modification of the DeOlmos-Heimer HRP method. NeurasciLett22: 1–4Google Scholar
  16. Eikmanns K-H (1955) Verhaltensphysiologische Untersuchungen fiber den Beutefang and das Bewegungssehen der Erdkröte (Bufo bufo L). Z Tierpsychol 12: 229–253CrossRefGoogle Scholar
  17. Ewert J-P (1967) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L) durch elektrische Mittelhirnreizung. Z Vergl Physiol54: 455–481Google Scholar
  18. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo). Z Vergi Physiol 61: 41–70Google Scholar
  19. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In:Google Scholar
  20. Vanegas H (ed) Comparative neurology of the optic tectum Plenum Press, New York, pp 247–416Google Scholar
  21. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405CrossRefGoogle Scholar
  22. Ewert J-P, Schfirg-Pfeiffer E, Weerasuriya A (1984a) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71: 590–591PubMedCrossRefGoogle Scholar
  23. Ewert J-P, Finkenstädt T, Weerasuriya A (1984b) Concepts for neuronal correlates of Gestalt perception: visual prey recognition in toads. In: Aoki K, Ishii S, Morita H (eds) Animal behavior, neurophysiological and ethological approaches. Japan Scientific Soc Press, Tokyo, pp 137–159Google Scholar
  24. Feldman JL (1986) Neurophysiology of respiration in mammals. In: Bloom FE (ed) Handbook of physiology. The nervous system. Intrinsic regulatory systems of the brain. American Physiological Society, Bethesda pp 463–524Google Scholar
  25. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C–2DG autoradiographs. J Comp Physiol156: 433–445Google Scholar
  26. Fuchs AF, Kaneko CRS (1985) A brain stem generator for saccadic eye movements. In: Evarts EV, Wise SP, Bousfield D (eds) The motor system in neurobiology. Elsevier Biomedical Press, Amsterdam New York Oxford, pp 126–132Google Scholar
  27. Gans C (1961) The bullfrog and its prey. Nat Hist70: 26–37Google Scholar
  28. Gans C, Gorniak GC (1982a) Functional morphology of lingual protrusion in marine toads (Bufo manrnus). Amer JAnat 163: 195–222Google Scholar
  29. Gans C, Gorniak GC (1982b) How does the toad flip its tongue? Test of two hypotheses. Science 216: 13351337Google Scholar
  30. Gaupp E (1899) A Lckei’s and R Wiedersheim’s Anatomic des Frosches. Vieweg and Sohn, BraunschweigGoogle Scholar
  31. Gladen S (1984) Der Einfluß derApomorphindosis auf das Beutefangverhalten and auf die reizspezifische Gewöhnung bei Erdkröten. Staatsexam Thesis, Univ KasselGoogle Scholar
  32. Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brooks VB (ed) Handbook of physiology. The nervous system. Motor control. American Physiological Society, Bethesda, pp 11791236Google Scholar
  33. Grobstein P, Comer C, Kostyk SK (1983) Frog prey capture: between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 331–347CrossRefGoogle Scholar
  34. Hinsche G (1935) Ein Schnappreflex nach “Nichts” bei Anuren. Zool Anz 111: 113–122Google Scholar
  35. Hobson JA, Scheibel AB (eds) (1980) The brain stem core: senson’motorintegration and behavioral state control. Neuroscience research program bulletin Vol 18. MIT Press, Cambridge MassGoogle Scholar
  36. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RRGoogle Scholar
  37. Ingle DJ (eds) Advances in vertebrate neuroethology Plenum Press, New York, pp 177–226Google Scholar
  38. Ito M (1986) Neural systems controlling movement. T7NS9: 515–518Google Scholar
  39. Jean A (1984) Brainstem organization of the swallowing network. Brain Behav Evol25: 109–116Google Scholar
  40. Kaneko CRS, Ewinger C, Fuchs AF (1981) Role of cat pontine burst neurons in generating of saccadic eye movements. JNeurophysiol46: 387–408Google Scholar
  41. Kicliter E (1973) Flux wavelength and movement discrimination in frogs: forebrain and midbrain contributions. Brain Behav Evo! 8: 340–365CrossRefGoogle Scholar
  42. Kostyk SK, Grobstein P (1987) Neuronal organization underlying visually elicited prey orienting in the frog. II: Anatomical studies on the laterality of central projections. Neurosci 21: 57–82CrossRefGoogle Scholar
  43. Kramer EB, Rath T, Lischka MF (1979) Somatotopic organization of the hypoglossal nucleus: HRP study in the rat. Brain Res 170: 533–537CrossRefGoogle Scholar
  44. Kupfermann I, Weiss KR (1978) The command neuron concept. Behav Brain Sci 1: 3–39CrossRefGoogle Scholar
  45. Landgren S, Olsson KA, Westberg KG (1986) Bulbar neurones with axonal projections to the trigeminal motor nucleus in the cat. Erp Brain Res 65: 98–111Google Scholar
  46. Lázár G (1969) Efferent pathways of the optic tectum in the frog. Acta Biol Acad Sci Hung20: 171–183Google Scholar
  47. Lázár G, Toth P, Csank G, Kicliter E (1983) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neuro 215: 108–120CrossRefGoogle Scholar
  48. Maeda M. Magherini PC, Precht W (1977) Functional organization of vestibular and visual inputs to neck and forelimb motoneurons in the frog. J Neurophysiol 40: 225–243PubMedGoogle Scholar
  49. Matesz C, Székely G (1977) The dorsomedial nuclear group of cranial nerves in the frog. Acta Biol Acad Sci Hung28: 461–474Google Scholar
  50. Matsushima T, Satou M, Ueda K (1986) Glossopharyngeal and tectal influences on tongue muscle motoneurons in the Japanese toad. Brain Res 265: 198–203CrossRefGoogle Scholar
  51. Nieuwenhuys R, Opdam P (1976) Structure of the brain stem. In: Llinds R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 811–855CrossRefGoogle Scholar
  52. Northcutt RG, Kicliter E (1980) Organization of the amphibian telencephalon. In: Ebbesson SOE (ed) Comparative neurology of the telencephalon. Plenum Press, New York, pp 203–255CrossRefGoogle Scholar
  53. Nozaki S, Enomoto S, Nakamura Y (1983) Identification and input-output properties of bulbar reticular neurons involved in the cerebral cortical control of trigeminal motoneurons in the cat. Exp Brain Res 49: 363–372PubMedCrossRefGoogle Scholar
  54. Olsson KA, Landgren S, Westberg KG (1986) Location of and peripheral convergence on the interneurone in the disynaptic path from the coronal gyros of the cerebral cortex to the trigeminal motoneurones in the cat. Erp Brain Res 65: 83–97Google Scholar
  55. Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem of the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol165: 307–331Google Scholar
  56. Parent A (1973) Distribution of monamine-containing neurons in the brain stem of the frog, Rana temporaria. JMorph 139: 67–78Google Scholar
  57. Porter R (1965) Synaptic potentials in hypoglossal motoneurones. JPhysiol (London)180: 209–244Google Scholar
  58. Quick I (1984) Auswirkungen von Apomurphin auf die visuelle Mustereliskiiminationstâhigkeit and die Beutefangmotivation bei Erdkröten. Staatsexam Thesis, Univ KasselGoogle Scholar
  59. Robinson DA (1981) Control of eye movements. In: Books VB (ed) Handbook of Physiology. The nervous systems. Motor control. American Physiological Society, Bethesda, pp 1275–1320Google Scholar
  60. Rubinson K (1968) Projections of the tectum opticum of the frog. Brain Behav Evol1: 529–561Google Scholar
  61. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo (L). J Comp Physiol 157: 739–748CrossRefGoogle Scholar
  62. Satou M, Matsushima T, Takeuchi H, Ueda K (1985) Tongue-muscle controlling motoneurons in the Japanes toad: topography, morphology, and neuronal pathways from the ‘snapping evoking area’ in the optic tectum. J Comp Physio1157: 717–737Google Scholar
  63. Schmidt RS (1976) Neural correlates of frog calling. Isolated brainstem. J Comp Physiol 108: 99–114CrossRefGoogle Scholar
  64. Schmidt RS (1984) Neural correlates of frog calling: preoptic area trigger of ‘mating calling’. J Comp Physiol 154: 847–853CrossRefGoogle Scholar
  65. Schneider D (1954) Das Gesichtsfeld and der Fixiervorgang bei einheimischen Anuren. Z Vergl Physiol36: 147–164Google Scholar
  66. Shinn EA, Dole JW (1978) Evidence for a role for olfactory cues in the feeding response of leopard frogs, Rana pipiens. Herpetologica 34: 167–172Google Scholar
  67. Sailer RW (1977) Monoaminergic inputs to frog motoneurons: an anatomical study using fluorescence histochemical and silver degeneration techniques. Brain Res 122: 445–458CrossRefGoogle Scholar
  68. Stuesse SL, Cruce WLR, Powell KS (1983) Afferent and efferent components of the hypoglossal nerve in the grass frog. J Comp Neural 217: 432–439CrossRefGoogle Scholar
  69. Sumi T (1969) Synaptic potentials of hypoglossal motoneurons and their relation to reflex deglutition. Jap J Physiol 19: 68–79CrossRefGoogle Scholar
  70. Székely G, L izâr G (1976) Cellular and synaptic architecture of the optic tectum. In: Llinâs R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 407–434CrossRefGoogle Scholar
  71. Székely G, Levai G, Matesz K (1983) Primary afferent terminals in the nucleus of the solitary tract of the frog: an electron microsopic study. Exp Brain Res 53: 109–117PubMedCrossRefGoogle Scholar
  72. Uemura-Sumi M, Mizuno N, Iwahori N, Tackeuchi Y, Matsushima R (1981) Topographical representation of the hypoglossal nerve branches and tongue muscles in the hypoglossal nucleus of macaque monkeys. Neurosci Lett 22: 31–35PubMedCrossRefGoogle Scholar
  73. Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 613–627CrossRefGoogle Scholar
  74. Weerasuriya A (1988) Effect of medullary lesions and hypoglossal nerve transections on snapping in toads (in preparation)Google Scholar
  75. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toads optic tectum and sensori-motor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429–434CrossRefGoogle Scholar
  76. Weerasuriya A, Ewert J-P (1984) Afferents of the hypoglossal nucleus in the common European toad, Bufo bufa Amer Ass Anat Abstr1984: 192AGoogle Scholar
  77. Weerasuriya A, Ewert J-P (1988) Afferents of the hypoglossal nucleus in the toad, Bufo bufo (submitted)Google Scholar
  78. Westerfield M, Frank E (1982) Specificity of electrical coupling among neurons innervating forelimb muscles of the adult bullfrog. JNeurophysiol48: 904–913Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Ananda Weerasuriya
    • 1
  1. 1.Department of Physiology, Faculty of MedicineUniversity of ColomboColombo-8Sri Lanka

Personalised recommendations