How to Transform Topographically Ordered Spatial Information into Motor Commands

  • Horst Mittelstaedt
  • Thomas Eggert


The question of how topographically ordered sensory information is transformed into motor commands is largely unsolved. Our theoretical approach to the positive phototaxis of an “idealized planaria” leads to the concept of map-weighting provided by an intermediate information processing structure between eyes and motor apparatus. Map-weighting and subsequent summation generate the components which, reciprocally facilitated and inhibited in the CNS, yield appropriate commands. It is suggested that map-weighting may be adjusted to produce or restore an optimal match with the external luminance distribution. The matching may be achieved by comparing the reafference of the animal’s movements with an efference copy of the motor commands. The concept of map-weighting, in principle, may be applied to other sensori-motor functions as well, such as the transformation of the locus of prey in the toad’s tectum into an appropriate motor output.


Motor Command Spectral Amplitude Efference Copy Tuning Function Positive Phototaxis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Baldi P, Heiligenberg W (1988) How sensory maps could enhance resolution through ordered arrangements of broadly tuned receivers. Biol Cybern 59: 313–318Google Scholar
  2. Fisher R A (1925) Theory of statistical estimation. Proc Cambridge Philos Soc 22: 700CrossRefGoogle Scholar
  3. Haustein W (1988) Die Steuerung des Auges unter Listings Gesetz: Ein Matrizen-Modell der Okulomotorik und die Rolle der visuellen Reafferenz. PhD Dissertation Tech Univ MünchenGoogle Scholar
  4. Haustein W (1989) Considerations on Listing’s Law and the primary position by means of a matrix description of eye position control. Biol Cybern (submitted)Google Scholar
  5. Loeb J (1890) Der Heliotropismus der Thiere und seine Übereinstimmung mit dem Heliotropismus der Pflanzen. Verlag Georg Hertz, WürzburgGoogle Scholar
  6. Loeb J (1918) Forced movements, tropisms and animal conduct JB Lippincott Company, Philadelphia LondonGoogle Scholar
  7. Marko H (1982) Methoden der Systemtheorie. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  8. Mittelstaedt H (1960) The analysis of behavior in terms of control systems. In: Schaffner B (ed) Group processes, transactions of the fifth conference, Oct 1958. The Josiah Macy, Jr Foundation, New York, pp 45–84Google Scholar
  9. Mittelstaedt H (1962) Control systems of orientation in insects. Ann Rev Entomol7: 177. 198Google Scholar
  10. Mittelstaedt H (1964a) Basic solutions to a problem of angular orientation. In: Reiss RF (ed) Neural theory and modeling. Stanford University Press, pp 259–272Google Scholar
  11. Mittelstaedt H (1964b) Basic control patterns of orientational homeostasis. Symp SocErp Bio118: 365–385Google Scholar
  12. Mittelstaedt H (1975) On the processing of postural information. Fortschr Zoo123: 128–141Google Scholar
  13. Mittelstaedt H (1978) Kybernetische Analyse von Orientierungsleistungen. In: Hauske G, Butenandt E (eds) Kybernetik 1977. R Oldenbourg-Verlag, Munched, pp 144–195Google Scholar
  14. Mittelstaedt H (1983) Introduction into cybernetics of orientation behavior. In: Hoppe W, Lohmann WGoogle Scholar
  15. Mark! H, Ziegler H (eds) Biophysics. Springer-Verlag, Berlin Heidelberg New York, pp 794–801Google Scholar
  16. Mittelstaedt H (1985) Analytical cybernetics of spider navigation. In: Barth FG (ed) Neurobiology of arachnids. Springer-Verlag, Berlin Heidelberg New York, pp 298–316CrossRefGoogle Scholar
  17. Mittelstaedt H (1986) The subjective vertical as a function of visual and extraretinal cues. Acta Psychologica 63: 63–85PubMedCrossRefGoogle Scholar
  18. Mittelstaedt H (1988a) The information processing structure of the subjective vertical. A cybernetic bridge between its psychophysics and its neurobiology. In: Marko H, Hauske G, Struppler A (eds) Processing structures for perception and action. Final report of the “Sonderforschungsbereich Kybernetik.” Verlag Chemie, WeinheimGoogle Scholar
  19. Mittelstaedt H (1988b) Basic solutions to the problem of head-centric visual localization. In: Warren R, Wertheim AH (eds) Perception and control of self-motion. Erlbaum, Hillsdale, New Jersey (in press)Google Scholar
  20. Mittelstaedt H, Mittelstaedt M-L (1982) Homing by path integration. In: Papi F, Wallraff HG (eds) Avian navigation. Springer-Verlag, Berlin Heidelberg New York, pp 290–297CrossRefGoogle Scholar
  21. Rose D, Dobson VG (1985) Models of the visual cortex Wiley, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Horst Mittelstaedt
    • 1
  • Thomas Eggert
    • 1
  1. 1.Max-Planck-Institut für Verhaltensphysiologie SeewiesenSeewiesen/StarnbergFR Germany

Personalised recommendations