Visual Integration in Bulbar Structures of Toads: Intra/Extra-Cellular Recording and Labeling Studies

  • Wolfgang W. Schwippert
  • Thomas W. Beneke
  • Edda M. Framing

Abstract

The concept of coding by “command releasing systems” raises the question of how visual information is decoded in post-tectal structures of the medulla oblongata. In the present study, extra- and intracellular activities of neurons in the bulbar reticular formation (RetF) and in nuclei of the branchiomotor column (BMC) were analyzed in response to visual stimulation as well as to electrical stimulation of the optic tectum, the brain stem, or the spinal cord in slightly paralyzed toads. Similarities between tectal and bulbar visual neurons, based on receptive field sizes and responses to moving configurai stimuli, suggest various kinds of integrating properties in the RetF and BMC. Besides configurai selectivities, particular characteristics of bulbar neurons were tonic activity, or warming-up and burst activity in response to specific input. Transformation of a visual input into a standard pre-motor activity was shown by cells that displayed cyclic bursts as a post-stimulus event. Camera-lucida reconstructions of intracellularly labeled neurons revealed five morphological types distinguished by size, orientation, and extension of dendrites. Most labeled cells in the RetF and BMC showed dendritic trees with bewildering arborizations suitable to pick up inputs from different sites of the grey and white matter. Results obtained in amphibians and in mammals are discussed.

Keywords

Medulla Oblongata Intracellular Recording Dendritic Tree Optic Tectum Common Toad 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amri M, Car A, Jean A (1984) Medullary control of the pontine swallowing neurons in sheep. E.:rp Brain Res55: 105 - 110Google Scholar
  2. Anderson ME, Yoshida M, Wilson VJ (1971) Influence of the superior colliculus on cat neck motoneurons. J Neurophysiol 34: 898 - 907PubMedGoogle Scholar
  3. Antal M, Matsumoto N, Székely G (1986) Tectal neurons of the frog: intracellular recording and labeling with cobalt electrodes. J Comp Neurol 246: 238 - 253PubMedCrossRefGoogle Scholar
  4. Ariens Kappers CU, Huber CG, Crosby EC (1936) The comparative anatomy of the nervous system of vertebrates, including man. Vol.1, Macmillan, New YorkGoogle Scholar
  5. Ashton JA, Boddy A, Donaldson IML (1984) Input from proprioceptors in the extrinsic ocular muscles to the vestibular nuclei in the giant toad, Bufo marinus Bp Brain Res53: 409. 419Google Scholar
  6. Bässler U. (1986) On the definition of central pattern generator and its sensory control. Bio! Cybern 54: 6569Google Scholar
  7. Baumgarten R v, Kanzow E (1958) The interaction of two types of inspiratory neurons in the region of the tractus solitarius of the cat. Arch Ital Biol 96: 361 - 373Google Scholar
  8. Borchers H-W, Pinkwart C (1983) A telemetry system for single unit recording in the freely moving toad (Bufo bufo L). In: Ewert J-P, Capranica R R, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New YorkGoogle Scholar
  9. Boyle R, Pompeiano O (1981) Cerebellar influences on the response characteristics of vestibulospinal neurons to sinusoidal tilt. Arch Ital Bio1119: 208 - 225Google Scholar
  10. Brown WT, Ingle D (1973) Receptive field changes produced in frog thalmic units by lesions of the optic tectum. Brain Res 59: 405 - 409PubMedCrossRefGoogle Scholar
  11. Bullock TH, Terzuolo CA (1957) Diverse forms of activity in the somata of spontaneous and integrating ganglion cells. J Physio1138: 341-364Google Scholar
  12. Cannon SC, Robinson DA (1985) An improved neural-network model for the neural integrator of the oculo-motor system: more realistic neuron behavior. Biol Cybern 53: 93 - 108PubMedCrossRefGoogle Scholar
  13. Cohen MI, Feldman JL (1977) Models of respiratory phase switching. Fed Proc 36: 2367 - 2374PubMedGoogle Scholar
  14. Comer C, Schotland J, Grobstein P (1985) Short and longterm effects of unilateral vestibular lesions on posture and orieting movements in the frog. Soc Neurosci Abstr 11: 289Google Scholar
  15. Corner MA, Crain SM (1972) Patterns of spontaneous bioelectric activity during maturation in culture of fetal rodent medulla and spinal cord tissues. JNeurobiol3: 25 - 46Google Scholar
  16. Cruce WLR (1974) A supraspinal monosynaptic input to hindlimb motoneurons in lumbar spinal cord of the frog Rana catesbeiana. JNeurophysiol37: 691 - 704Google Scholar
  17. Dacey DM, Ulinski PS (1986a) Optic tectum of the eastern garter snake Thamnophis sirtalis. I: Efferent pathways. J Comp Neurol 245: 1 - 28PubMedCrossRefGoogle Scholar
  18. Dacey DM, Ulinski PS (1986b) Optic tectum of the eastern garter snake Thamnophis sirtalis. V. Morphology of brainstem afferents and general discussion. J Comp Neurol 245: 423 - 453PubMedCrossRefGoogle Scholar
  19. Dieringer N, Precht W (1986) Functional organization of eye velocity and eye position signals in abducens motoneurons of the frog. J CompPhysiol 158: 179 - 194Google Scholar
  20. Donkelaar, ten H-J, de Boer-van Juizen R, Schuoten FIM, Eggen SJH (1981) Cells of origin of descending pathways to the spinal cord in the clawed toad Xenopus laevis. Neurosci 16: 2297 - 2312Google Scholar
  21. Ebbesson SOE (1976) Morphology of the spinal cord. In: Llings L, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 679 - 706Google Scholar
  22. Ebbesson SOE (1984) Evolution and ontogeny of neural circuits. Behav Brain Sci 7: 321-366 Eckmiller R (1987) Neural control of pursuit eye movements. Physiol Rev 67: 797 - 857Google Scholar
  23. Edinger L (1908) Vorlesungen über den Bau der nervösen Zentralorgane des Menschen und der Tiere, Vol.2. Vogel, LeipzigGoogle Scholar
  24. Euler C v (1983) On the origin and pattern control of breathing rhythmicity in mammals. In: Roberts A, Roberts BL (eds) Neural origin of rhythmic movements. Symp Sco Exp Biol. Cambridge Univ Press, Cambridge, pp 469 - 485Google Scholar
  25. Euler C v, Hayward JN, Marttila I, Wyman RJ (1973) Respiratory neurones of the ventrolateral nucleus of the solitary tract of cat: vagal input, spinal connections and morphological identification. Brain Res 61: 1 - 22CrossRefGoogle Scholar
  26. Ewert J-P (1968) Der EinfluB von Zwischenhirndefekten auf die Visuomotorik im Beute-und Fluchtverhalten der Erdkröte (Bufo bufo L.). Z Verg Physiol 61: 41 - 70Google Scholar
  27. Ewert J-P (1971) Single unit response of the toad (Bufo americanus) caudal thalamus to visual objects. Z Verg Physiol74: 81 - 102Google Scholar
  28. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230: 34 - 42Google Scholar
  29. Ewert J-P (1976) The visual system of the toad: behavioral and physiological studies on a pattern recognition system. In: Fite KV (ed) The amphibian visual system: a multidisciplinary approach. Academic Press, New York, pp 141 - 202Google Scholar
  30. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, New York, pp 247416Google Scholar
  31. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337405Google Scholar
  32. Ewert J-P, Borchers H-W (1971) Reaktionscharakteristik von Neuronen aus dem Tectum opticum und Subtectum der Erdkröte Bufo bufo (L). Z Vergl Physiol71: 165 - 189Google Scholar
  33. Ewert J-P, von Seelen W. (1974) Neurobiologie und System-Theorie eines visuellen Muster- Erkennungsmechanismus bei Kröten. Kybernetik 14: 167 - 83PubMedCrossRefGoogle Scholar
  34. Ewert J-P, Wietersheim A v (1974) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physiol92: 131 - 148Google Scholar
  35. Ewert J-P, Finkenstädt T (1987) Modulation of tectal functions by prosencephalic loops in amphibians. A commentary. Behav Brain Sci 10: 122 - 123CrossRefGoogle Scholar
  36. Ewert J-P, Speckhardt I, Amelang W (1970) Visuelle Inhibition und Excitation im Beutefangverhalten der Erdkröte Bufo bufo L. Z Vergl Physiol 68: 84 - 110CrossRefGoogle Scholar
  37. Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus, Praetectum, Tectum: retinale Topographie und physiologische Interaktionen bei der Kröte Bufo bufo L. JComp Physiol92: 343 - 356Google Scholar
  38. Ewert J-P, Borchers H-W, Wietersheim A v (1979) Directional sensitivity, invariance, and variability of tectal T5 neurons in response to moving configurai stimuli in the toad Bufo bufo (L). J Comp Physiol132.191-201Google Scholar
  39. Ewert J-P, Schürg-Pfeiffer E, Weerasuriya A (1984) Neurophysiological data regarding motor pattern generation in the medulla oblongata of toads. Naturwissenschaften 71: 590 - 591PubMedCrossRefGoogle Scholar
  40. Ewert J-P, Matsumoto N, Schwippert WW (1985) Morphological identification of prey-selective neurons in the grass frog’s optic tectum. Naturwissenschaften 72: 661 - 662PubMedCrossRefGoogle Scholar
  41. Ewert J-P, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1989) Extracellular activity of neurons of the toad’s medulla oblongata in response to visual stimulation: a functional approach toward tectal/bulbar/spinal circuitry (submitted)Google Scholar
  42. Feldman JL, Sommer D, Cohen MI (1980) Short time scale correlations between discharges of medullary respiratory neurons. J Neurophysiol43: 1284 - 1295Google Scholar
  43. Finkenstädt T, Adler NT, Allen TO, Ebbesson SOE, Ewert J-P (1985) Mapping of brain activity in mesencephalic and diencephalic structures of toads during presentation of visual key stimuli: a computer assisted analysis of 14C-2DG autoradiographs. J Comp Physiol 156: 433 - 445CrossRefGoogle Scholar
  44. Finkenstädt T, Adler NT, Allen TO, Ewert J-P (1986) Regional distribution of glucose utilization in the telencephalon of toads in response to configurational visual stimuli: a 14C-2DG study. J Comp Physiol 158: 457 - 467Google Scholar
  45. Framing EM (1986) Extrazelluläre Ableitungen visuell sensitiver Neuronen in der Medulla oblongata der Erdkröte Bufo bufo spinasus (L). Diploma Thesis, FB 19, Univ KasselGoogle Scholar
  46. Framing EM, Ewert J-P (1989) Parallel single cell recordings in the toad’s medulla oblongata: correlation of spike activity (in preparation)Google Scholar
  47. Friesen WO, Poon M, Stent G (1976) An oscillatory neural circuit generating a locomotory rythm. PNAS 73: 3734 - 3738PubMedCrossRefGoogle Scholar
  48. Fuller JH, Schlag JD (1976) Determination of antidromic excitation by the collision test: problems of interpretation. Brain Res 112: 283 - 298PubMedCrossRefGoogle Scholar
  49. Garcia-Rill E, Skinner RD (1987) The mesencephalic locomotor region I: Activation of a medullary projection side. Brain Res411: 1-12Google Scholar
  50. Gaupp E, (1896) A.Ecke?s and R.Wiedersheim’s Anatomie des Frosches F Viehweg xufann Sohn, BraunschweigGoogle Scholar
  51. Gillette R (1987) The role of neural command in fixed action patterns of behavior. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester, pp 46 - 79Google Scholar
  52. Gillette R, Kovac MP, Davis WJ (1978) Command neurons in Pleurobranchaea receive synaptic feedback from the motor network that they excite. Science 199: 798 - 801PubMedCrossRefGoogle Scholar
  53. Görcs T, Antal M, Olah E, Sz6kely G (1979) An improved cobalt technique with complex compounds. Act Biol Acad Sci Hung30: 79 - 86Google Scholar
  54. Grantyn A, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. II: Morphological properties as revealed by intra-axonal injections of horseradish peroxidase. Exp Brain Res 66: 339 - 354PubMedCrossRefGoogle Scholar
  55. Grantyn A, Grantyn R, Robin6 (1977) Neuronal organization of the tecto-oculomotor pathways. In: Baker R, Berthoz A (eds) Control of gaze by brain stem neurons Elsevier, Amsterdam. pp 197 - 206Google Scholar
  56. Grantyn A, Ong-Meang Jacques V, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. Dip Brain Res 66: 355 - 377CrossRefGoogle Scholar
  57. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228: 143 - 149PubMedCrossRefGoogle Scholar
  58. Grillner S, McClellan A, Sigvardt K, Wallen P, Williams T (1982) On the neural generation of ’fictive locomotion’ in lower vertebrate system, in vitro. In: Sjölund B, Bjórklund A (eds) Brain stem control of spinal mechanisms. Fernstróm Foundation Series, Elsevier Biomedical Press, Amsterdam New York Oxford, pp 273 - 295Google Scholar
  59. Grillner S (1985) Neurobiological bases of rhythmic motor acts in vertebrates. Science 228: 143 - 149PubMedCrossRefGoogle Scholar
  60. Grossberg S (1987) Co-operative self-organisation of multiple neural systems during adaptive sensorimotor control. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester, pp 260 - 300Google Scholar
  61. Grasser O-J, Grasser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas L, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297 - 385CrossRefGoogle Scholar
  62. Hartline DK (1967) Integrative physiology of the lobster cardiac ganglion. Thesis Harvard Univ Biology DepartmentGoogle Scholar
  63. Hartline DK, Gassie Jr DV (1979) Pattern generation in the lobster (Panulirus) stomatogastric ganglion. Biol Cybern 33: 209 - 222PubMedCrossRefGoogle Scholar
  64. Herrick CT (1930) The medulla oblongata of Necturus. J Comp Neuro150: 1 - 96Google Scholar
  65. Holst E v (1939) Die relative Koordination als Phänomen and als Methode zentralnervöser Funktionsanalyse. Erg Physiol 13: 228 - 306CrossRefGoogle Scholar
  66. Ingle DJ (1983) Brain mechanisms of visual localization by frogs and toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances invertebrate neuroethology. Plenum-Press, New York. pp 177 - 226CrossRefGoogle Scholar
  67. Ito M (1986) Neural systems controlling movements. TINS9: 515-518Google Scholar
  68. Julesz B (1976) Experiments in the visual perception of texture. In: Held R, Richards W (eds) Recent progress in perception. WH Freeman, San Francisco. pp 37 - 46Google Scholar
  69. Kazennikov OV, Selionov VA, Shik ML, Yakokleva GV (1980) The rombencephalic ’locomotor region’ in turtles. Neurophysiol 12: 251 - 257Google Scholar
  70. Kling V, Székely G (1968) Simulation of rhythmic neurons activities. I: Functions of networks with cyclic inhibitions. Kybernetik 5: 89 - 103PubMedCrossRefGoogle Scholar
  71. Kostyk SK, Grobstein P (1987a) Neuronal organization underlying visually elicited prey orienting in the frog. - II: Anatomical studies on the laterality of central projections. Neurosci 21: 57 - 82CrossRefGoogle Scholar
  72. Kostyk SK, Grobstein P (1987b) Neuronal organization underlying visually elicited prey orienting in the frog. III: Evidence for the existence of an uncrossed descending tectofugal pathway. Neurosci 21: 8396Google Scholar
  73. Lara R, Cervantes F, Arbib MA (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 371 - 393CrossRefGoogle Scholar
  74. Lazar G (1969) Efferent pathways of the optic tectum in frog. Act Biol Acad Sci Hung20: 171 - 183Google Scholar
  75. Lizdr G, Tóth P, Crank G, Kicliter E (1983) Morphology and location of tectal projection neurons in frogs: a study with HRP and cobalt-filling. J Comp Neurol 215: 108 - 120CrossRefGoogle Scholar
  76. Lettvin JY, Maturana HR, McCulloch, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc IRE 47: 1940 - 1951CrossRefGoogle Scholar
  77. Lipski J (1981) Antidromic activation of neurons as an analytic tool in the study of the central nervous system. JNeurosci Methods 4: 1 - 32CrossRefGoogle Scholar
  78. Lipski J, Merrill EG (1980) Electrophysiological demonstration of the projection from expiratory neurons in rostral medulla to contralateral dorsal respiratory group. Brain Res 197: 521 - 524PubMedCrossRefGoogle Scholar
  79. Lowe AA (1981) The neural regulation of tongue movements. Frog Neurobiol 15: 295 - 344CrossRefGoogle Scholar
  80. Madden KP, Remmers JE (1982) Short time scale correlations between spike activity of neighboring respiratory neurons of nucleus tractus solitarius. J Neurophysiol 48: 749 - 760PubMedGoogle Scholar
  81. Manteufel G, Manteufel-Naujoks C (1987) Optic inputs to identified neck-muscle motoneurons of Salamandra salamandm (L) JHirnforsch 28: 525 - 632Google Scholar
  82. Matesz C (1979) Central projection of the VIIIth cranial nerve in the frog. Neurosci 4: 2061 - 2071CrossRefGoogle Scholar
  83. Matesz C, Székely G (1978) The motor column and sensory projections of the branchial cranial nerves in the frog. J Comp Neural 178: 157 - 176CrossRefGoogle Scholar
  84. Matsumoto N, Antal M (1984) Physiological and morphological study of prey and predator detecting neurons in the frog tectum. Proc 6th Ann Meet Jpn Soc Gen Comp Physiol, p 169Google Scholar
  85. Matsumoto N, Bando T (1980) Excitatory synaptic potentials and morphological classification of tectal neurons of the frog. Brain Res 192: 39 - 48PubMedCrossRefGoogle Scholar
  86. Matsumoto N, Schwippert WW, Ewert J-P (1985) Receptive field and morphology of tectal neurons of the frog. Proc 7th Ann Meet Jpn Soc Gen Comp Physiol, p 138Google Scholar
  87. Matsumoto N, Schwippert WW, Ewert J-P (1986) Intracellular activity of morphologically identified neurons of the grass frog’s optic tectum in response to moving configurational visual stimuli. J Comp Physiol A 159: 721 - 739CrossRefGoogle Scholar
  88. Matsuoka K. (1985) Sustained oscillations generated by mutually inhibiting neurons with adaptation. Biol Cybern 52: 367 - 376PubMedCrossRefGoogle Scholar
  89. Matsushima T, Satou M, Ueda K (1984) Toad’s snapping pathway. relationship to the excitatory pathways from glossopharyngeal nerve to tongue-muscle motoneurons. Zoo! Sci 1: 881Google Scholar
  90. Maynard DM (1955) Direct inhibition in the lobster cardiac ganglion. Thesis Univ Calif, Los Angeles Dept ZoologyGoogle Scholar
  91. Maynard DM (1972) Simpler networks. Ann NYAcad Sci 193: 59 - 72CrossRefGoogle Scholar
  92. Mcllwain JT (1986) Effects of eye position on saccades evoked electrically from superior colliculus of alert cats. J Neurophysiol 55: 97 - 112Google Scholar
  93. Mensah PL (1974) The course and distribution of descending fibers of the lateral funiculus of the amphibian spinal cold PhD Thesis Univ Calif IrvineGoogle Scholar
  94. Mensah PL, Glanzman DL, Levy WB, Thompson RF (1974) The effects of 5,6-hydroxytryptamine in the amphibian spinal cord using silver staining techniques. Brain Res78: 25 - 261.Google Scholar
  95. Merrill EG (1979) Is there reciprocal inhibition between medullary inspiratory and expiratory neurones? In: Euler C v, Lagercrantz H (eds) Central nervous control mechanisms of breathing Pergamon Press, Oxford, pp 239 - 254Google Scholar
  96. Merrill EG (1981) Where are the real respiratory neurons? Fed Proc 40: 289 - 2394Google Scholar
  97. Miles FA, Evarts EV (1979) Concepts of motor organization. Ann Rev Psychol 30: 327 - 362CrossRefGoogle Scholar
  98. Mitchel RA, Herbert DA (1974) Synchronized high frequency synaptic potentials in medullary respiratory neurons. Brain Res75: 350-355Google Scholar
  99. Moriyama Y (1987) Rhythmical jaw movements and lateral ponto-medullary reticular neurons in rats. Comp Biochem Physiol A 86: 7 - 14PubMedCrossRefGoogle Scholar
  100. Nieuwenhuys R, Opdam P (1976) Structure of the brain stem. In: Llinxufanns L, Precht W (eds) Flog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 811 - 855CrossRefGoogle Scholar
  101. Noble D (1983) Ionic mechanisms of rhythmic firing. In: Roberts A, Roberts BL (eds) Neural origin of rhythmic movements. Symp Soc Exp Biol, Cambridge Univ Press, CambridgeGoogle Scholar
  102. Oka Y, Takeuchi H, Satou M, Ueda K (1987) Morphology and distribution of the preganglionic parasympathetic neurons of the facial, glossopharyngeal and vagus nerves in the Japanese toad: a cobaltic lysine study. Brain Res 400: 389 - 395PubMedCrossRefGoogle Scholar
  103. Opdam P, Kemali M, Nieuwenhuys R (1976) Topological analysis of the brain stem in the frogs Rana esculenta and Rana catesbeiana. J Comp Neurol 165: 307 - 331CrossRefGoogle Scholar
  104. Pearson K (1976) The control of walking. Sci Amer235: 72 - 86Google Scholar
  105. Peterson BW, Fukushima K (1982) The reticulospinal system and its role in generating vestibular and visuomotor reflexes. In: Sjölund B, Björklund A (eds) Brain stem control of spinal mechanisms Fernström Foundation Series, Elsevier Biomedical Press, Amsterdam New York Oxford, pp 225 - 252Google Scholar
  106. Peterson BW, Anderson ME, Filion M (1974) Responses of ponto-medullary reticular neurons to cortical, tectal and cutaneous stimuli. Fxp Brain Res 21: 19 - 44Google Scholar
  107. Peterson BW, Maunz RA, Pitts NG, Mackel RG (1975) Patterns of projecting and branching of reticulospinal neurons. Prp Brain Res 23: 333 - 351Google Scholar
  108. Peterson BW, Pitts NG, Fukushima K, Mackel R (1978) Reticulospinal excitation and inhibition of neck motoneurons. Exp Brain Res 32: 471 - 489PubMedGoogle Scholar
  109. Pompeiano O (1981) Sensory mechanisms and motor control. Progress Rep Inst Human Physiol Univ Pisa, pp 3 - 20Google Scholar
  110. Roberts A (1987) Skin sensory modalities, free nerve endings and behaviour. a reappraisal based on studies of amphibian embryos. In: Guthrie DM (ed) Aims and methods in neuroethology. Manchester Univ Press, Manchester, pp 80 - 103Google Scholar
  111. Roberts BL, Williamson RM (1983) Motor pattern formation in the dogfish spinal cord. In: Roberts A, Roberts BL (eds) Neural origin of rhythmic movements. Symp Soc Exp Biol. Cambridge Univ Press, Cambridge, pp 31 - 350Google Scholar
  112. Robinson DA (1981) Control of eye movements. In: Brookhart JM, Mountcastle VB, Brooks VB, Geiger SR (eds) Handbook of physiology, Section I:: The nervous system, IL Motor controi; Part Z American Physiological Society, Bethesda Maryland, pp 1275 - 1320Google Scholar
  113. Rose D, Lamicol N, Duron B (1984) An HRP study of the cat’s spinal respiratory motoneurones during postnatal development. Exp Brain Res56: 458 - 467Google Scholar
  114. Rose PK, Abrahams VC (1978) Tectospinal and tectoreticular cells: their distribution and afferent connections. Can J Physiol Pharmacol 56: 650 - 658PubMedCrossRefGoogle Scholar
  115. Röthig P (1927) Beiträge zum Studium des Zentralnervensystems der Wirbeltiere. 11. Ober die Faserzüge im Mittelhirn, Kleinhirn and der Medulla oblongata der Urodelen and Anuren. Z Mikr Anat Forsch 10: 381 - 472Google Scholar
  116. Rubinson E (1968) Projections of the tectum opticum of the frog. Brain Behav Evol 1: 529-561 Russell DF, Hartline DK (1978) Bursting neural networks: a reexamination. Science 200: 453 - 455Google Scholar
  117. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad Bufo bufo L. J Comp Physiol A 157: 739 - 748PubMedCrossRefGoogle Scholar
  118. Satou M, Matsushima T, Ueda K (1984) Neuronal pathways from the tectal snapping-evoking area to the tongue muscle controlling motoneurons in the Japanese toad: evidence of the intervention of excitatory interneurons. Zool Sci 1: 829 - 832Google Scholar
  119. Satou M, Matsushima T, Takeuchi H, Ueda K (1985) Tongue-muscle-controlling motoneurons in the Japanese toad: topography, morphology and neuronal pathways from the ’snapping-evoking area’ in the optic tectum. J Comp Physiol A 157: 717 - 737PubMedCrossRefGoogle Scholar
  120. Schlag JD (1978) Electrophysiological mapping techniques. In: Robertson RT (ed) Neuroanatomical research techniques Academic Press, New York, pp 385 - 404Google Scholar
  121. Schmidt RS (1971) A model of the central mechanisms of male anuran acoustic behavior. Behaviour 39: 288 - 317PubMedCrossRefGoogle Scholar
  122. Schmidt RS (1973) Vocal cord mechanisms of release calling in Northern Leopard Frog. Copeia 1973 (3): 624 - 627CrossRefGoogle Scholar
  123. Schmidt RS (1974a) Central mechanisms of frog calling. Amer Zoo113: 1169 - 1177Google Scholar
  124. Schmidt RS (1974b) Neural correlates of frog calling: independence from peripheral feedback. J Comp Physiol88: 321 - 333Google Scholar
  125. Schmidt RS (1976) Neural correlates of frog calling. J Comp Physiol 108: 99 - 113CrossRefGoogle Scholar
  126. Schwippert WW, Ewert J-P (1987) Visual neurons in the medulla oblongata of common toads: intracellular recording and labeling. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Proc 15th Göttingen Neurobiol Conf. Thieme Verlag, Stuttgart, p 158Google Scholar
  127. Schwippert WW, Beneke TW, Ewert J-P (1988) The processing of visual information in the rostral brain stem of toads. In: Rauschecker J, Mohn G (eds) Visual processing of form and motion. Europ Brain Behav Soc Workshop, p 77Google Scholar
  128. Schwippert WW, Beneke TW, Ewert J-P (1989) Neurobiological studies of intracellularly recorded and labeled neurons in the toad’s medulla oblongata (submitted)Google Scholar
  129. Selverston AI (1980) Are central pattern generators understandable? BehavBrain Sci 3: 535 - 571Google Scholar
  130. Selverston AI, Miller JP, Wadepuhl M (1983) Cooperative mechanisms for the production of rhythmic movements. In: Roberts A, Roberts BL (eds) Neural origin of rhythmic movements. Cambridge Univ Press, Cambridge, pp 55 - 87Google Scholar
  131. Shik ML, Yagodnitsyn AS (1977) The pontobulbar ’locomotor strip’. Neurophysiol9: 95 - 97Google Scholar
  132. Steeves JD, Sholomenko GN, Webster DMS (1986) Stimulation of the pontomedullary reticular formation initiates locomotion in decerebrate birds. Brain Res 401: 205 - 212CrossRefGoogle Scholar
  133. Székely G (1965) Logical network for controlling limb movement in urodela. Acta Physiol Hung 27: 285289Google Scholar
  134. Székely G (1973) Anatomy and synaptology of the optic tectum. In: Autrum H, Jung R, Loewenstein WR, MacKay DM, Teuber HL (eds) Handbook of sensory physiology VII/3, Central processing of visual information, Part B, Springer-Verlag, Berlin Heidelberg New York, pp 1 - 26Google Scholar
  135. Székely G, Antal M (1981) Significance of the dendritic pattern in the function of the neuron. In: Székely G, Labos E, Damjanovich S (eds) Neuronal communication and control. Adv Physiol Sci 30, Pergamon Press and Akademiai Kiad, Buapest, pp 171 - 182Google Scholar
  136. Székely G, Matesz C (1987) Trigeminal motoneurons with disparate dendritic geometry innervate different muscle groups in the frog. Neurosci Lett 77: 161 - 165PubMedCrossRefGoogle Scholar
  137. Takizawa N (1981) Integral multiple interspike intervals of spontaneous activity in.isolated medulla oblongata of frog. Brain Res 212: 466 - 469PubMedCrossRefGoogle Scholar
  138. Toth P, Csank G, Ldzâr G (1985) Morphology of cells of origin of descending pathways to the spinal cord in Rana esculenta. A tracing study using cobalt-lysine complex. JHirnforsch 26: 365 - 83Google Scholar
  139. Tsai HJ, Ewert J-P (1988) Influence of stationary and moving background structures on the response of visual neurons in toads (Bufo bufo). Brain Behav Evol 32: 27 - 38PubMedCrossRefGoogle Scholar
  140. Tuge H (1932) Somatic motor mechanisms in the midbrain and medulla oblongata of Chrysemys elegans (Wied). J Comp Neurol55: 185 - 271Google Scholar
  141. Viala D (1986) Evidence for direct reciprocal interactions between the central rhythm generators for spinal respiratory and locomotor activities in the rabbit. P_ep Brain Res 63: 225 - 232Google Scholar
  142. Viala D, Freton E (1983) Evidence for respiratory and locomotor pattern generators in the rabbit cervicothoracic cord and their interaction. Pip Brain Res 49: 247 - 256Google Scholar
  143. Watanabe A, Obara S, Toyohiro A (1967) Pacemaker potentials for the periodic burst discharge in the heart ganglion of a stomatopod, Squilla oratoria. J Gen Physiol50: 839 - 862Google Scholar
  144. Weerasuriya A (1983) Snapping in toads: some aspects of sensorimotor interfacing and motor pattern generation. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum-Press, New York, pp 613 - 628CrossRefGoogle Scholar
  145. Weerasuriya A, Ewert J-P (1981) Prey-selective neurons in the toad’s optic tectum and sensorimotor interfacing: HRP studies and recording experiments. J Comp Physiol 144: 429 - 434CrossRefGoogle Scholar
  146. Wendler G (1969) Relative Koordination bei gekoppelten, rhythmisch tätigen Modellneuronen. Zoo! Anz Suppl 33: 477 - 482Google Scholar
  147. Whittington DA, Lestienne F, Bizzi E (1984) Behavior of preoculomotor burst neurons during eye-head coordination. Pap Brain Res 215 - 222Google Scholar
  148. Wilczynski W, Northcut RG (1983a) Connections of the bullfrog striatum: efferent projections. J Comp Neurol214: 333 - 343Google Scholar
  149. Wilczynski W, Northcut RG (1983b) Connections of the bullfrog striatum: afferent organization. J Comp Neurol 214: 321 - 333PubMedCrossRefGoogle Scholar
  150. Willis JB (1986) The modelling of neural circuitry. ProgNeurobiol 26: 93 - 118Google Scholar
  151. Wilson DM, Waldron I (1968) Models for the generating of motor output pattern in flying locusts. ProcIEEE56: 1058 - 1064Google Scholar
  152. Yerkes RM (1903) The instincts, habits, and reactions of the frog. Harvanl Psycho] Studies 1: 579 - 638Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Wolfgang W. Schwippert
    • 1
  • Thomas W. Beneke
    • 1
  • Edda M. Framing
    • 1
  1. 1.Abteilung Neuroethologie, Fachbereich Biologie/ChemieUniversität KasselKasselFR Germany

Personalised recommendations