Behavior-Correlated Properties of Tectal Neurons in Freely Moving Toads

  • Evelyn Schürg-Pfeiffer


Searching for the cellular fundamentals of visuomotor function, in the optic tectum of paralyzed toads and frogs various neurons can be classified with respect to their sensitivity or selectivity in response to moving configurai visual stimuli. The tectal T5-type neurons were of particular interest, since these — as output elements of pretectal/tectal circuitry — are suggested to be involved in configurai pattern recognition and in releasing various action patterns (concept of “command releasing system”). The present data obtained from T5.2 neurons in freely moving toads during prey-catching behavior support this concept: (i) These neurons are best activated by prey objects, e.g., worm-like stimuli; (ii) their discharge peak-frequencies depend on the animal’s motivation and attention; (iii) discharges precede orienting and snapping toward prey; (iv) during orienting these neurons are typically active, but during snapping they are silent. The configuration-selective characteristics both of T52 neurons and prey-catching are abolished after lesioning caudal thalamic (pretectal) nuclei while the prey-catching system itself is functioning. Hence, T5.2 neurons display at least four behavior-correlated properties: recognition, pre-motor activity, motor-feedback, and state-dependent modulation.


Superior Colliculus Optic Tectum Single Unit Activity Bufo Bufo Tectal Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akert K (1949) Der visuelle Greifreflex. HelvPhysiol Pharmacol Acta 7: 112–134Google Scholar
  2. Barlow H-B (1953) Summation and inhibition in the frog’s retina. JPhysiol (Lond) 119: 69–88Google Scholar
  3. Borchers H-W (1980) Untersuchungen zur Relation zwischen Verhalten und derAktivitât von Neuronen aus der retinotectalen Projektion freibeweglicher Enikrbten (Bufo bufo L). Habil Thesis, Univ of KasselGoogle Scholar
  4. Borchers H-W (1982a) Correlation between behavior patterns and single unit responses from the optic tectum in freely moving toad (Bufo bufo). In: Trappel R, Ricciardi L, Pask G (eds) Progress in Biocybernetics and Systems Res Vol 9, Hemisphere Publication Corp, McGraw-Hill, Washington London, pp 109–117Google Scholar
  5. Borchers H-W (1982b) Advances in the development of micro-recording systems and single unit analysis in toads (Bufo bufo). J Theor Neurobiol 1: 268–285Google Scholar
  6. Borchers H-W (1982c) Behavior-correlated neurons in freely moving toads. Neurosci Lett (Suppl) 10: 8485Google Scholar
  7. Borchers H-W, Ewert J-P (1978) Eye closure in toads (Buio buio L) does not produce off responses in retinal on-off ganglion cells: a question of efferent commands. J Comp Physiol 125: 301–303CrossRefGoogle Scholar
  8. Borchers H-W, Ewert J-P (1979) Correlation between behavioral and neuronal activation of toads Bufo bufo (L) in response to moving configurational prey stimuli. BehavProcess4: 99–106Google Scholar
  9. Borchers H-W, Pinkwart C (1983) A telemetry system for single unit recording in the freely moving toad (Bufo buio L) In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 603–612Google Scholar
  10. Brooks BA, Fuchs AF (1975) Influence of stimulus parameters on visual sensitivity during saccadic eye movement. Vision Res 15: 1389–1398PubMedCrossRefGoogle Scholar
  11. Burghagen H, Ewert J-P (1982) Question of “head preference” in response to worm-like dummies during prey-capture of toads Bufo bufa Behav Process 7: 295–306CrossRefGoogle Scholar
  12. DiDomenico R, Eaton RC (1987) Toward a reformulation of the command concept. Behav Brain Sci 10: 374–375CrossRefGoogle Scholar
  13. Eaton RC (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 629–636CrossRefGoogle Scholar
  14. Evarts EV (1968a) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31: 14–27PubMedGoogle Scholar
  15. Evarts EV (1968b) A technique for recording activity of subcortical neurons in moving animals. Electroenceph Clin Neurophysiol 24: 83–86PubMedCrossRefGoogle Scholar
  16. Evarts EV, Fromm C (1977) Sensory responses in motor cortex neurons during precise motor control. Neurosci Lett 5: 267–272PubMedCrossRefGoogle Scholar
  17. Ewert J-P (1967a) Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L). PflügersArch 295: 90–98CrossRefGoogle Scholar
  18. Ewert J-P (1967b) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L) durch elektrische Mittelhirnreizung. Z Vergl Physio l54: 455–481CrossRefGoogle Scholar
  19. Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physio l54: 455–481CrossRefGoogle Scholar
  20. Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L). PflúgersArch 308: 225–243Google Scholar
  21. Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230: 34–42Google Scholar
  22. Ewert J-P (1980a) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New York (German edition, Springer-Verlag, Berlin Heidelberg New York 1976; Japanese edition, Baifukan, Tokyo 1982; Chinese edition, Peking Science Press, Peking 1983 )Google Scholar
  23. Ewert J-P (1980b) Prey-catching sequence controlled by a multiple action system in toads. Neurosci Lett (Suppl) 5: 28 Google Scholar
  24. Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, London New York, pp 247–416Google Scholar
  25. Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405CrossRefGoogle Scholar
  26. Ewert J-P, Borchers H-W (1974) Antworten retinaler Ganglienzellen bei freibeweglichen Kröten. J Comp Physiol 92: 117–130Google Scholar
  27. Ewert J-P, Hock FJ (1972) Movement sensitive neurones in the toad’s retina. Pap Brain Res 16: 41–59Google Scholar
  28. Ewert J-P, Wietersheim A v (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physio1 92: 131–148CrossRefGoogle Scholar
  29. Ewert J-P, Wietersheim A v (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physio1 92 149–160Google Scholar
  30. Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physiol 92: 343–356CrossRefGoogle Scholar
  31. Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey feature-detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol 126: 43. 47Google Scholar
  32. Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475CrossRefGoogle Scholar
  33. Ewert J-P, Buxbaum-Conradi H, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1988) Extracellular activity of neurons of the toad’s medulla oblongata in response to visual and tactile stimulation: a functional approach toward tectal/bulbar/spinal circuitry. (in prep)Google Scholar
  34. Fromm C, Evarts EV (1977) Relation of motor cortex neurons to precisely controlled and ballistic movements. Neurosci Lett 5: 259–265PubMedCrossRefGoogle Scholar
  35. Gladen S (1984) Der Einfluß derApomorphindosis auf das Beutefangverhalten und auf die reizspezifische Gewöhnung bei Endkröten. Staatsexam Thesis, FB 19, Univ of KasselGoogle Scholar
  36. Gottschaldt K-M, Vahle-Hinz C (1979) A simplified method of making steel microelectrodes. Pflügers Arch 382: 52Google Scholar
  37. Grobstein P, Corner C, Kostyk SK (1983) Frog prey-catching behavior between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 331–347CrossRefGoogle Scholar
  38. Grasser O-J, Grösser-Cornehls U (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59: 1–24CrossRefGoogle Scholar
  39. Grússer O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385CrossRefGoogle Scholar
  40. Grösser O-J, Grüsser-Cornehls U, Finkelstein D, Henn V, Patutschnik M, Butenandt E (1967) A quantitative analysis of movement detecting neurons in the frog retina. PfiúgersArch 293: 100–106Google Scholar
  41. Hubel DH (1957) Single unit activity in visual cortex of the unanaesthetised cat. Fed Proc 16: 63Google Scholar
  42. Hubel DH (1959) Single unit activity in striate cortex of unrestrained cats. JPhysiol (Lond) 147: 226–238Google Scholar
  43. Hubel DH (1960) Single unit activity in the lateral geniculate body and optic tract of unrestrained cats. J Physiol (Lond) 150: 91–104Google Scholar
  44. Ito M (1986) Neural systems controlling movements. TINS 10: 515–518Google Scholar
  45. Jasper H, Ricci GF, Doane B (1958) Patterns of cortical neuron discharge during conditioned responses in monkeys. In: Wolstenholme G, O’Connor C (eds) Neurological basis of behaviour. Little Brown, BostonGoogle Scholar
  46. Lemon R, Prochazka A (1984) Methods for neuronal recording in conscious animals Wiley, Chichester New York Brisbane Toronto SingaporeGoogle Scholar
  47. Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng NY 47: 1940–1951Google Scholar
  48. Lettvin JY, Maturana JY, Pitts WH, McCulloch WS (1961) Two remarks on the visual system of the frog. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge MA, pp 757–776Google Scholar
  49. Lynch JC, Mountcastle YB, Talbot WH, Yin YCT (1977) Parietal lobe mechanisms for directed visual attention. JNeurophysiol 40: 362–389Google Scholar
  50. MacKay DM (1970) Evaluation of visual threshold by displacement of retinal image. Nature 225: 90–92PubMedCrossRefGoogle Scholar
  51. MacKay DM (1973) Visual stability and voluntary eye movements. In: Jung R (ed) Central processing of visual information. Handbook of sensory physiology, Vol VII/3A. Springer-Verlag, Berlin Heidelberg New York, pp 307–332Google Scholar
  52. Manning A (1979) An introduction to animal behavior. Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  53. Mcllwain JT (1986) Effects of eye position on saccades evoked electrically from superior colliculus of alert cats. JNeurophysiol 55: 97–112Google Scholar
  54. Megela A, Borchers H-W, Ewert J-P (1983) Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo. Naturwissenschaften 70: 100–101CrossRefGoogle Scholar
  55. Mountcastle VB (1975) The view from within: pathways to the study of perception. The Johns Hopkins Med J 136: 109–131Google Scholar
  56. Mountcastle VB (1976) The world around us: neural command functions for selective attention. The FO Schmitt Lecture in Neuroscience 1975. Neurosci Res Progr Bull 14. MIT Press, Cambridge MA, pp 1–47Google Scholar
  57. Mountcastle VB, Lynch JC, Georgpoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. JNeurophysiol 38: 871–908Google Scholar
  58. Phillips MI (1973) Brain unit activity during behavior. Charles C Thomas Press, Springfield IllGoogle Scholar
  59. Pinkwart C, Borchers H-W (1987) Miniature three-function transmitting system for single neuron recording, wireless brain stimulation, and marking. JNeurosci Methods 20: 341–352CrossRefGoogle Scholar
  60. Quick I (1984) Auswirkungen von Apomorphin auf die visuelle Musterdiskriminationsfâhigkeit and die Beutefangmotivation bei Enikröten. Staatsexam Thesis, FB 19, Univ of KasselGoogle Scholar
  61. Roucoux A, Guittan D, Crommelinck M (1980) Stimulation of the superior colliculus in the alert cat. Il. Eye and head movements evoked when the head is unrestrained. Evil Brain Res 39: 75–85Google Scholar
  62. Roucoux A, Crommelinck M (1987) Sensorimotor maps in the tectum. Behav Brain Sci 10: 386–388CrossRefGoogle Scholar
  63. Salcman M, Bak MJ (1973) Design, fabrication and in vivo chronic recording intracortical microelectrodes. IEEE Trans Biomed Eng 20: 253–260PubMedCrossRefGoogle Scholar
  64. Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo (L). J Comp Physiol 157: 739–748CrossRefGoogle Scholar
  65. Schipperheyn JJ (1973) Respiratory eye movement and perception of stationary objects in the frog. Acta Physiol Pharmacol Neerl 12: 157–159Google Scholar
  66. Schürg-Pfeiffer E (1983) A simple method of testing tungsten microelectrodes by their galvanic properties. Laboratory Report, Neuroethol Dept, FB 19, Univ of KasselGoogle Scholar
  67. Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of gestalt prey features in the frog Rana temporaria. J Comp Physio 1141: 139–152CrossRefGoogle Scholar
  68. Schürg-Pfeiffer E, Ewert J-P (1987) Correlation between responses of prey-selective T5.2 neurons and prey-catching in freely moving toads. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme-Verlag, StuttgartGoogle Scholar
  69. Schürg-Pfeiffer E, Ewert J-P (1988) Correlation between tectal single neuron activity and prey-catching in freely moving toads (in preparation) Google Scholar
  70. Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1988) Correlation between behavior and neuronal activity in the medulla oblongata of toads. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme-Verlag, StuttgartGoogle Scholar
  71. Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. In: Finger TE (ed) Neural cartography: how does the CNS use sensory maps? Karger, Basel, pp 49–55Google Scholar
  72. Spreckelsen C (1987) Relation zwischen neuronalen Aktivitäten in der Medulla oblongata and Bewegungsmustern bei derBrdkröte. Dipl Thesis, Univ of MarburgGoogle Scholar
  73. Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish Procambarus clarkii (Girard). Comp Biochem Physiol 12: 509–525PubMedCrossRefGoogle Scholar
  74. Wurtz RH (1979) Modulation of the primate visual system by attention and readiness to respond. In: Kandel ER, Krasne FB, Strumwasser F, Truman JW (eds) Cellular mechanisms in the selection and modulation of behavior. Neurosci Res Progr Bull 17. MIT Press, Cambridge MA, pp 562–576Google Scholar
  75. Wurtz RH, Goldberg ME (1972) Activity of superior colliculus in behaving monkey. III: Cells discharging before eye movements. J Neurophysiol 35: 575–586PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Evelyn Schürg-Pfeiffer
    • 1
  1. 1.Abteilung Neuroethologie, Fachbereich Biologie/ChemieUniversität KasselKasselFR Germany

Personalised recommendations