Skip to main content

Behavior-Correlated Properties of Tectal Neurons in Freely Moving Toads

  • Chapter
Visuomotor Coordination

Abstract

Searching for the cellular fundamentals of visuomotor function, in the optic tectum of paralyzed toads and frogs various neurons can be classified with respect to their sensitivity or selectivity in response to moving configurai visual stimuli. The tectal T5-type neurons were of particular interest, since these — as output elements of pretectal/tectal circuitry — are suggested to be involved in configurai pattern recognition and in releasing various action patterns (concept of “command releasing system”). The present data obtained from T5.2 neurons in freely moving toads during prey-catching behavior support this concept: (i) These neurons are best activated by prey objects, e.g., worm-like stimuli; (ii) their discharge peak-frequencies depend on the animal’s motivation and attention; (iii) discharges precede orienting and snapping toward prey; (iv) during orienting these neurons are typically active, but during snapping they are silent. The configuration-selective characteristics both of T52 neurons and prey-catching are abolished after lesioning caudal thalamic (pretectal) nuclei while the prey-catching system itself is functioning. Hence, T5.2 neurons display at least four behavior-correlated properties: recognition, pre-motor activity, motor-feedback, and state-dependent modulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akert K (1949) Der visuelle Greifreflex. HelvPhysiol Pharmacol Acta 7: 112–134

    CAS  Google Scholar 

  • Barlow H-B (1953) Summation and inhibition in the frog’s retina. JPhysiol (Lond) 119: 69–88

    CAS  Google Scholar 

  • Borchers H-W (1980) Untersuchungen zur Relation zwischen Verhalten und derAktivitât von Neuronen aus der retinotectalen Projektion freibeweglicher Enikrbten (Bufo bufo L). Habil Thesis, Univ of Kassel

    Google Scholar 

  • Borchers H-W (1982a) Correlation between behavior patterns and single unit responses from the optic tectum in freely moving toad (Bufo bufo). In: Trappel R, Ricciardi L, Pask G (eds) Progress in Biocybernetics and Systems Res Vol 9, Hemisphere Publication Corp, McGraw-Hill, Washington London, pp 109–117

    Google Scholar 

  • Borchers H-W (1982b) Advances in the development of micro-recording systems and single unit analysis in toads (Bufo bufo). J Theor Neurobiol 1: 268–285

    Google Scholar 

  • Borchers H-W (1982c) Behavior-correlated neurons in freely moving toads. Neurosci Lett (Suppl) 10: 8485

    Google Scholar 

  • Borchers H-W, Ewert J-P (1978) Eye closure in toads (Buio buio L) does not produce off responses in retinal on-off ganglion cells: a question of efferent commands. J Comp Physiol 125: 301–303

    Article  Google Scholar 

  • Borchers H-W, Ewert J-P (1979) Correlation between behavioral and neuronal activation of toads Bufo bufo (L) in response to moving configurational prey stimuli. BehavProcess4: 99–106

    Google Scholar 

  • Borchers H-W, Pinkwart C (1983) A telemetry system for single unit recording in the freely moving toad (Bufo buio L) In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 603–612

    Google Scholar 

  • Brooks BA, Fuchs AF (1975) Influence of stimulus parameters on visual sensitivity during saccadic eye movement. Vision Res 15: 1389–1398

    Article  PubMed  CAS  Google Scholar 

  • Burghagen H, Ewert J-P (1982) Question of “head preference” in response to worm-like dummies during prey-capture of toads Bufo bufa Behav Process 7: 295–306

    Article  Google Scholar 

  • DiDomenico R, Eaton RC (1987) Toward a reformulation of the command concept. Behav Brain Sci 10: 374–375

    Article  Google Scholar 

  • Eaton RC (1983) Is the Mauthner cell a vertebrate command neuron? A neuroethological perspective on an evolving concept. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York, pp 629–636

    Chapter  Google Scholar 

  • Evarts EV (1968a) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31: 14–27

    PubMed  CAS  Google Scholar 

  • Evarts EV (1968b) A technique for recording activity of subcortical neurons in moving animals. Electroenceph Clin Neurophysiol 24: 83–86

    Article  PubMed  CAS  Google Scholar 

  • Evarts EV, Fromm C (1977) Sensory responses in motor cortex neurons during precise motor control. Neurosci Lett 5: 267–272

    Article  PubMed  CAS  Google Scholar 

  • Ewert J-P (1967a) Elektrische Reizung des retinalen Projektionsfeldes im Mittelhirn der Erdkröte (Bufo bufo L). PflügersArch 295: 90–98

    Article  CAS  Google Scholar 

  • Ewert J-P (1967b) Aktivierung der Verhaltensfolge beim Beutefang der Erdkröte (Bufo bufo L) durch elektrische Mittelhirnreizung. Z Vergl Physio l54: 455–481

    Article  Google Scholar 

  • Ewert J-P (1968) Der Einfluß von Zwischenhirndefekten auf die Visuomotorik im Beute-and Fluchtverhalten der Erdkröte (Bufo bufo L). Z Vergl Physio l54: 455–481

    Article  Google Scholar 

  • Ewert J-P (1969) Quantitative Analyse von Reiz-Reaktionsbeziehungen bei visuellem Auslösen der Beutefang-Wendereaktion der Erdkröte (Bufo bufo L). PflúgersArch 308: 225–243

    CAS  Google Scholar 

  • Ewert J-P (1974) The neural basis of visually guided behavior. Sci Amer230: 34–42

    Google Scholar 

  • Ewert J-P (1980a) Neuroethology: an introduction to the neurophysiological fundamentals of behavior. Springer-Verlag, Berlin Heidelberg New York (German edition, Springer-Verlag, Berlin Heidelberg New York 1976; Japanese edition, Baifukan, Tokyo 1982; Chinese edition, Peking Science Press, Peking 1983 )

    Google Scholar 

  • Ewert J-P (1980b) Prey-catching sequence controlled by a multiple action system in toads. Neurosci Lett (Suppl) 5: 28

    Google Scholar 

  • Ewert J-P (1984) Tectal mechanisms that underlie prey-catching and avoidance behaviors in toads. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum Press, London New York, pp 247–416

    Google Scholar 

  • Ewert J-P (1987) Neuroethology of releasing mechanisms: prey-catching in toads. Behav Brain Sci 10: 337–405

    Article  Google Scholar 

  • Ewert J-P, Borchers H-W (1974) Antworten retinaler Ganglienzellen bei freibeweglichen Kröten. J Comp Physiol 92: 117–130

    Google Scholar 

  • Ewert J-P, Hock FJ (1972) Movement sensitive neurones in the toad’s retina. Pap Brain Res 16: 41–59

    CAS  Google Scholar 

  • Ewert J-P, Wietersheim A v (1974a) Musterauswertung durch tectale und thalamus/praetectale Nervennetze im visuellen System der Kröte (Bufo bufo L). J Comp Physio1 92: 131–148

    Article  Google Scholar 

  • Ewert J-P, Wietersheim A v (1974b) Der Einfluß von Thalamus/Praetectum-Defekten auf die Antwort von Tectum-Neuronen gegenüber bewegten visuellen Mustern bei der Kröte (Bufo bufo L). J Comp Physio1 92 149–160

    Google Scholar 

  • Ewert J-P, Hock FJ, Wietersheim A v (1974) Thalamus/Praetectum/Tectum: Retinale Topographie und physiologische Interaktionen bei der Kröte (Bufo bufo L). J Comp Physiol 92: 343–356

    Article  Google Scholar 

  • Ewert J-P, Borchers H-W, Wietersheim A v (1978) Question of prey feature-detectors in the toad’s Bufo bufo (L) visual system: a correlation analysis. J Comp Physiol 126: 43. 47

    Google Scholar 

  • Ewert J-P, Burghagen H, Schürg-Pfeiffer E (1983) Neuroethological analysis of the innate releasing mechanism for prey-catching behavior in toads. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 413–475

    Chapter  Google Scholar 

  • Ewert J-P, Buxbaum-Conradi H, Framing EM, Schürg-Pfeiffer E, Weerasuriya A (1988) Extracellular activity of neurons of the toad’s medulla oblongata in response to visual and tactile stimulation: a functional approach toward tectal/bulbar/spinal circuitry. (in prep)

    Google Scholar 

  • Fromm C, Evarts EV (1977) Relation of motor cortex neurons to precisely controlled and ballistic movements. Neurosci Lett 5: 259–265

    Article  PubMed  CAS  Google Scholar 

  • Gladen S (1984) Der Einfluß derApomorphindosis auf das Beutefangverhalten und auf die reizspezifische Gewöhnung bei Endkröten. Staatsexam Thesis, FB 19, Univ of Kassel

    Google Scholar 

  • Gottschaldt K-M, Vahle-Hinz C (1979) A simplified method of making steel microelectrodes. Pflügers Arch 382: 52

    Google Scholar 

  • Grobstein P, Corner C, Kostyk SK (1983) Frog prey-catching behavior between sensory maps and directed motor output. In: Ewert J-P, Capranica RR, Ingle DJ (eds) Advances in vertebrate neuroethology. Plenum Press, New York London, pp 331–347

    Chapter  Google Scholar 

  • Grasser O-J, Grösser-Cornehls U (1968) Neurophysiologische Grundlagen visueller angeborener Auslösemechanismen beim Frosch. Z Vergl Physiol 59: 1–24

    Article  Google Scholar 

  • Grússer O-J, Grüsser-Cornehls U (1976) Neurophysiology of the anuran visual system. In: Llinas R, Precht W (eds) Frog neurobiology. Springer-Verlag, Berlin Heidelberg New York, pp 297–385

    Chapter  Google Scholar 

  • Grösser O-J, Grüsser-Cornehls U, Finkelstein D, Henn V, Patutschnik M, Butenandt E (1967) A quantitative analysis of movement detecting neurons in the frog retina. PfiúgersArch 293: 100–106

    Google Scholar 

  • Hubel DH (1957) Single unit activity in visual cortex of the unanaesthetised cat. Fed Proc 16: 63

    Google Scholar 

  • Hubel DH (1959) Single unit activity in striate cortex of unrestrained cats. JPhysiol (Lond) 147: 226–238

    CAS  Google Scholar 

  • Hubel DH (1960) Single unit activity in the lateral geniculate body and optic tract of unrestrained cats. J Physiol (Lond) 150: 91–104

    CAS  Google Scholar 

  • Ito M (1986) Neural systems controlling movements. TINS 10: 515–518

    Google Scholar 

  • Jasper H, Ricci GF, Doane B (1958) Patterns of cortical neuron discharge during conditioned responses in monkeys. In: Wolstenholme G, O’Connor C (eds) Neurological basis of behaviour. Little Brown, Boston

    Google Scholar 

  • Lemon R, Prochazka A (1984) Methods for neuronal recording in conscious animals Wiley, Chichester New York Brisbane Toronto Singapore

    Google Scholar 

  • Lettvin JY, Maturana HR, McCulloch WS, Pitts WH (1959) What the frog’s eye tells the frog’s brain. Proc Inst Radio Eng NY 47: 1940–1951

    Google Scholar 

  • Lettvin JY, Maturana JY, Pitts WH, McCulloch WS (1961) Two remarks on the visual system of the frog. In: Rosenblith WA (ed) Sensory communication. MIT Press, Cambridge MA, pp 757–776

    Google Scholar 

  • Lynch JC, Mountcastle YB, Talbot WH, Yin YCT (1977) Parietal lobe mechanisms for directed visual attention. JNeurophysiol 40: 362–389

    CAS  Google Scholar 

  • MacKay DM (1970) Evaluation of visual threshold by displacement of retinal image. Nature 225: 90–92

    Article  PubMed  CAS  Google Scholar 

  • MacKay DM (1973) Visual stability and voluntary eye movements. In: Jung R (ed) Central processing of visual information. Handbook of sensory physiology, Vol VII/3A. Springer-Verlag, Berlin Heidelberg New York, pp 307–332

    Google Scholar 

  • Manning A (1979) An introduction to animal behavior. Springer-Verlag, Berlin Heidelberg New York

    Google Scholar 

  • Mcllwain JT (1986) Effects of eye position on saccades evoked electrically from superior colliculus of alert cats. JNeurophysiol 55: 97–112

    Google Scholar 

  • Megela A, Borchers H-W, Ewert J-P (1983) Relation between activity of tectal neurons and prey-catching behavior in toads Bufo bufo. Naturwissenschaften 70: 100–101

    Article  CAS  Google Scholar 

  • Mountcastle VB (1975) The view from within: pathways to the study of perception. The Johns Hopkins Med J 136: 109–131

    CAS  Google Scholar 

  • Mountcastle VB (1976) The world around us: neural command functions for selective attention. The FO Schmitt Lecture in Neuroscience 1975. Neurosci Res Progr Bull 14. MIT Press, Cambridge MA, pp 1–47

    Google Scholar 

  • Mountcastle VB, Lynch JC, Georgpoulos A, Sakata H, Acuna C (1975) Posterior parietal association cortex of the monkey: command functions for operations within extrapersonal space. JNeurophysiol 38: 871–908

    CAS  Google Scholar 

  • Phillips MI (1973) Brain unit activity during behavior. Charles C Thomas Press, Springfield Ill

    Google Scholar 

  • Pinkwart C, Borchers H-W (1987) Miniature three-function transmitting system for single neuron recording, wireless brain stimulation, and marking. JNeurosci Methods 20: 341–352

    Article  CAS  Google Scholar 

  • Quick I (1984) Auswirkungen von Apomorphin auf die visuelle Musterdiskriminationsfâhigkeit and die Beutefangmotivation bei Enikröten. Staatsexam Thesis, FB 19, Univ of Kassel

    Google Scholar 

  • Roucoux A, Guittan D, Crommelinck M (1980) Stimulation of the superior colliculus in the alert cat. Il. Eye and head movements evoked when the head is unrestrained. Evil Brain Res 39: 75–85

    CAS  Google Scholar 

  • Roucoux A, Crommelinck M (1987) Sensorimotor maps in the tectum. Behav Brain Sci 10: 386–388

    Article  Google Scholar 

  • Salcman M, Bak MJ (1973) Design, fabrication and in vivo chronic recording intracortical microelectrodes. IEEE Trans Biomed Eng 20: 253–260

    Article  PubMed  CAS  Google Scholar 

  • Satou M, Ewert J-P (1985) The antidromic activation of tectal neurons by electrical stimuli applied to the caudal medulla oblongata in the toad, Bufo bufo (L). J Comp Physiol 157: 739–748

    Article  CAS  Google Scholar 

  • Schipperheyn JJ (1973) Respiratory eye movement and perception of stationary objects in the frog. Acta Physiol Pharmacol Neerl 12: 157–159

    Google Scholar 

  • Schürg-Pfeiffer E (1983) A simple method of testing tungsten microelectrodes by their galvanic properties. Laboratory Report, Neuroethol Dept, FB 19, Univ of Kassel

    Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1981) Investigation of neurons involved in the analysis of gestalt prey features in the frog Rana temporaria. J Comp Physio 1141: 139–152

    Article  Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1987) Correlation between responses of prey-selective T5.2 neurons and prey-catching in freely moving toads. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme-Verlag, Stuttgart

    Google Scholar 

  • Schürg-Pfeiffer E, Ewert J-P (1988) Correlation between tectal single neuron activity and prey-catching in freely moving toads (in preparation)

    Google Scholar 

  • Schürg-Pfeiffer E, Spreckelsen C, Ewert J-P (1988) Correlation between behavior and neuronal activity in the medulla oblongata of toads. In: Elsner N, Creutzfeldt O (eds) New frontiers in brain research. Thieme-Verlag, Stuttgart

    Google Scholar 

  • Sparks DL (1988) Neural cartography: sensory and motor maps in the superior colliculus. In: Finger TE (ed) Neural cartography: how does the CNS use sensory maps? Karger, Basel, pp 49–55

    Google Scholar 

  • Spreckelsen C (1987) Relation zwischen neuronalen Aktivitäten in der Medulla oblongata and Bewegungsmustern bei derBrdkröte. Dipl Thesis, Univ of Marburg

    Google Scholar 

  • Wiersma CAG, Ikeda K (1964) Interneurons commanding swimmeret movements in the crayfish Procambarus clarkii (Girard). Comp Biochem Physiol 12: 509–525

    Article  PubMed  CAS  Google Scholar 

  • Wurtz RH (1979) Modulation of the primate visual system by attention and readiness to respond. In: Kandel ER, Krasne FB, Strumwasser F, Truman JW (eds) Cellular mechanisms in the selection and modulation of behavior. Neurosci Res Progr Bull 17. MIT Press, Cambridge MA, pp 562–576

    Google Scholar 

  • Wurtz RH, Goldberg ME (1972) Activity of superior colliculus in behaving monkey. III: Cells discharging before eye movements. J Neurophysiol 35: 575–586

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Schürg-Pfeiffer, E. (1989). Behavior-Correlated Properties of Tectal Neurons in Freely Moving Toads. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_15

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics