Perception by Sensorimotor Coordination in Sensory Substitution for the Blind

  • Reinhard Koy-Oberthür

Abstract

A contour based technical aid for the blind is presented. This device is intended to enable the perception of object contours and their spatial relations, improving orientation and mobility for the blind. An optical contour sensor reduces environmental information to direction and position of object contours. These relevant contour informations are transmitted to the blind by the cutaneous system at the lower arm as substitution channel. The blind carries the contour sensor like a torch in his hand. He scans an object or a scene by contour tracking and saccades, depending on the context of actual acquired information and his experience knowledge. Recognition results from coordinating the sensory information and the motor reactions in connection with context. Based on schema theory a model of the perception process is proposed. The model is described by a formal grammar generating a symbolic description of the “world” by composing actual sensory informations with motor reactions, including the context of experience by an associator. This model can be extended to a hierarchical structure of concurrent models. Complex perceptual contents are produced stepwise by the elementary informations and reactions. The model is compaired with experimental data. Finally, schema theoretical implications are discussed from an information theoretical point of view.

Keywords

Perception Process Motor Reaction Perceptual Content Combine Figure Object Contour 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arbib MA (1968) Algebraic theory of machines, languages, and semigroups Academic Press, New York [German edition (1973): Algebraische Theorie abstrakter Automaten, formaler Sprachen und Halbgruppen. Akademie-Verlag, Berlin]Google Scholar
  2. Arbib MA, Hesse MB (1986) The construction of reality. Cambridge Univ Press, Cambridge MACrossRefGoogle Scholar
  3. Bach-y-Rita P (1977) Hirnplastizität und sensorische Substitution. In: Boehringer Mannheim GmbH (ed) Mannheimer Forum 76/77. Mannheim, pp 89–144Google Scholar
  4. Collins CC (1978) Visual substitution in blind mobility. Proc VIIth Int Conf of Ergophthalmology. Kagoya JapanGoogle Scholar
  5. Collins CC, Bach-y-Rita P (1973) Transmission of pictorial information through the skin. In: Lawrence H, Hamilton JG (eds) Advances in biological and medical physics Vol 14. Academic Press, New York, pp 285–315Google Scholar
  6. Collins CC, Deering M (1981) Real-time natural scene analysis for a blind prothesis. Proc of the 7th Int Joint Conf on Artificial Intelligence, VancouverGoogle Scholar
  7. Depalma GF, Yau SS (1975) Fractionally fuzzy grammars with application to pattern recognition. In: Zaheh LA, Fu KS, Tanaka K, Shimura M (eds) Fuzzy sets and their applications to cognitive and decision processes. Academic Press, New York, pp 329–351Google Scholar
  8. Frisby P (1979) Seeing, illusion, brain, and mind. Oxford Univ Press, OxfordGoogle Scholar
  9. Fu KS (1974) Syntactic methods in pattern recognition. Academic Press, New YorkGoogle Scholar
  10. Geiser G (1985) Codierung optischer Information. In: Bodmann H-W (ed) Aspekte der Informationsverarbeitung. Springer-Verlag, Berlin Heidelberg New York, pp 221–253CrossRefGoogle Scholar
  11. Herschel R (1974) Einführung in die Theorie der Automaten, Sprachen und Algorithmen Oldenbourg Verlag, MünchenGoogle Scholar
  12. Herzog HW, Kügle M (1982) Untersuchung zu technischen Hilfsmitteln für Blinde. Infratest Gesundheitsforschung, MünchenGoogle Scholar
  13. Hoffmann C (1981) Eine tragbare Sinnesprothese für Gehörlose zur Übertragung von Sprachinformation durch elektrische Anregung der Haut. PhD Dissertation, Inst Techn Univ Munich, MünchenGoogle Scholar
  14. Korn A (1982) Bildverarbeitung durch das visuelle System. Fachberichte Messen-Steuern-Regeln 8, Springer-Verlag, Berlin Heidelberg New YorkGoogle Scholar
  15. Koy-Oberthür R (1987) Bin Kontur-Wahrnehmungs-System far Blinde - Entwicklung des Systems, Optimierung der Informationsübertragung an den Blinden und Beschreibung der Wahrnehmung als syntaktischen Mustererkennungsprozzeß. VDI-Verlag, DüsseldorfGoogle Scholar
  16. Lara R, Cervantes F, Arbib M (1982) Two-dimensional model of retinal-tectal-pretectal interactions for the control of prey-predator recognition and size preference in amphibia. In: Amari S, Arbib MA (eds) Competition and cooperation in neural nets. Springer-Verlag, Berlin Heidelberg New York, pp 371–393CrossRefGoogle Scholar
  17. Lara R, Carmona M, Daza F, Cruz A (1984) A global model of the neural mechanisms responsible for visuomotor coordination in toads. JTheor Bio! 110: 587–618CrossRefGoogle Scholar
  18. Macrae AW (1970) Cannel capacity in absolut judgement tasks: an artifact of information bias? Psycho! Bull 73: 112–121CrossRefGoogle Scholar
  19. Miller GA (1956) The magical number seven plus or minus two: some limits on our capacity for processing information. Psycho! Rev63: 81–97Google Scholar
  20. Mühlenfeld E, Therburg RD (1981) Erkennung und Vermessung stark gestörter linienhafter Bildstrukturen. Technisches Messen 48 (5): 179–186Google Scholar
  21. Mühlenfeld E (1984) Robot vision by a contour sensor with associative memory. Pattern Recognition 17 (1): 169–176CrossRefGoogle Scholar
  22. Neisser U (1976) Cognition and reality. Freeman, New York [German edition (1979): Kognition und Wirklichkeit. Klett-Cotta, Stuttgart]Google Scholar
  23. Niemann H (1983) Klassifikation von Mustern. Springer-Verlag, Berlin Heidelberg New YorkCrossRefGoogle Scholar
  24. Özdemir M (1985) Untersuchung zur Beschreibung der Informationsübertragung durch den Tastsinn des Menschen bei elektrischer Anregung der Haut. Dipl Thesis, Institut Elek Informationstechnik Tech Univ Clausthal, Clausthal-ZellerfeldGoogle Scholar
  25. Piaget J (1954) The construction of reality in the child. Basic Books, New York [German edition (1975): Der Aufbau der Wirklichkeit beim Kinde, Band 2. Ernst Klett Verlag, Stuttgart]Google Scholar
  26. Shannon CE, Weaver WW (1949) The mathematical theory of communication. Univ of Illinois Press, Illinois [German edition (1976): Mathematische Grundlagen der Informationstheorie. Oldenbourg-Verlag, München]Google Scholar
  27. Völz H (1982) Information I. Studie zur Vielfalt und Einheit der Information. Akademie-Verlag, BerlinGoogle Scholar
  28. Warren DH, Strelow ER (eds) (1985) Electronic spatial sensing for the blind: contributions from perception rehabilitation and computer vision. Martinus Nijhoff Publishers, Dordrecht Boston LancasterGoogle Scholar
  29. Welsh RL, Blasch BB (eds) (1980) Foundation of orientation and mobility for the blind American Foundation of the Blind, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Reinhard Koy-Oberthür
    • 1
  1. 1.Institut für Elektrische InformationstechnikTechnische Universität ClausthalClausthal-ZellerfeldFR Germany

Personalised recommendations