Skip to main content

Why Cortices? Neural Networks for Visual Information Processing

  • Chapter
Visuomotor Coordination

Abstract

Neural networks for the processing of sensory information show remarkable similarities between different species and across different sensory modalities. As an example, cortical organization found in the mamalian neopallium and in the optic tecta of most vertebrates appears to be equally appropriate as a substrate for visual, auditory, and somatosensory information processing. In this paper, we formulate three structural principles of the vertebrate visual cortex that allow to analyze structure and function of these neural networks on an intermediate level of complexity. Computational applications are taken from the field of early vision. The proposed principles are: (a) Average anatomy, i e, lamination, average axonal and dendritic domains, and intrinsic feedback, determines the spatiotemporal interactions in cortical processing. Possible applications of the resulting filters include continuous motion perception and the direct measurement of high-level parameters of image flow. (b) Retinotopic mapping is an emergent property of massively parallel connections. With a local intrinsic operation in the target area, mapping combines to a space-variant image processing system as would be useful in the analysis of optical flow. (c) Further space-variance is brought about by both, discrete or patchy connections between areas and periodic or columnar arrangement of specialized neurons within the areas. We present preliminary results on the significance of these principles for neural computation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am A2: 322–342

    Article  Google Scholar 

  • Barlow HB (1985) Cerebral cortex as a model builder. In: Rose D, Dobson VG (eds) Models of the visual cortex. John Wiley & Sons, Chichester, New York, pp 37–46

    Google Scholar 

  • Barlow HB (1986) Why have multiple cortical areas? Vision Res26: 81–90

    Google Scholar 

  • Braccini C, Gambardella G, Sandini G (1981) A signal theory approach to the space and frequency variant filtering performed by the human visual system. Signal Processing3: 231–240

    Google Scholar 

  • Braitenberg V (1985) Charting the visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex Vol 3: Visual cortex. Plenum Press, New York, pp 379–410

    Google Scholar 

  • Creutzfeldt OD, Sakmann B, Scheich H, Korn A (1970) Sensitivity distribution and spatial summation within receptive-field center of retinal on-center ganglion cells and transfer function of the retina. J Neurophysio133: 654–671

    Google Scholar 

  • Dinse HRO, Best J, Krüger K, Mallot HA, Seelen W v (1988) The dynamics of receptive field organization in the cat visual cortex (areas 17, 18, 19, and PMLS): oscillations and non-separability. (in Preparation)

    Google Scholar 

  • Enroth-Cugell C, Robson JG, Schweitzer-Tong DE, Watson AB (1983) Spatiotemporal interactions in the cat retinal ganglion cells showing linear spatial summation. JPhysiol (London) 341: 279–307

    CAS  Google Scholar 

  • Epstein LI (1984) An attempt to explain the differences between the upper and lower halves of the striate cortical map of the cat’s field of view. Bio! Cybern 49: 175–177

    Article  CAS  Google Scholar 

  • Fischer B (1973) Overlap of receptive field centers and representation of the visual field in the cat’s optic tract. Vision Res 13: 2113–2120

    Article  PubMed  CAS  Google Scholar 

  • Fischer B, May HU (1970) Invarianzen in der Katzenretina: GesätzmiiBige Beziehungen zwischen Empfindlichkeit, Größe und Lage receptiver Felder von Ganglienzellen. Exp Brain Res 11: 448–464

    Article  PubMed  CAS  Google Scholar 

  • Götz KG (1988) Cortical templates for the self-organization of orientation-specific d-and 1-hypercolumns in monkeys and cats. Bio! Cybern 58: 213–223

    Article  Google Scholar 

  • Grimson WEL (1981) From images to surfaces. MIT Press, Cambridge, MA, London

    Google Scholar 

  • Heeger DJ (1987) Optical flow from spatiotemporal filters. Proc First Int Conf Comp Vision, London, pp 181–190

    Google Scholar 

  • Horn BKP (1986) Robot vision. MIT Press, Cambridge, MA, London

    Google Scholar 

  • Jain R, Barlett SL, O’Brien N (1987) Motion stereo using ego-motion complex logarithmic mapping. IEEE Trans Pattern Anal Machine Intel (PAMI) 9: 356–369

    Article  CAS  Google Scholar 

  • Knudsen EI, du Lac S, Esterly SD (1987) Computational maps in the brain. Ann Rev Neurosci 10: 41–65

    Article  PubMed  CAS  Google Scholar 

  • Koenderink JJ, Van Doom AJ (1976) Local structure of movement parallax of the plane. J Opt Soc Amer 66: 717–723

    Article  Google Scholar 

  • Korn A, von Seelen W (1972) Dynamische Eigenschaften von Nervennetzen im visuellen System. Kybernetik 10: 64–77

    Article  PubMed  CAS  Google Scholar 

  • Krone G, Mallot HA, Palm G, Schüz A (1986) Spatiotemporal receptive fields: a dynamical model derived from cortical architectonics. Proc Roy Soc (Lond) B 226: 421–444

    Article  CAS  Google Scholar 

  • Little JJ, Bülthoff HH, Poggio T (1987) Parallel optical flow computation. In: Baumann, L (ed) Proc Image Understanding Workshop Scientific Applications International Corp, Los Altos, CA, pp 915–920

    Google Scholar 

  • Löwel S, Freeman B, Singer W (1987) Topographic organization of the orientation column system in large flat-mounts of the cat visual cortex: a 2-deoxyglucose study. J Comp Neurol 255: 401–415

    Article  PubMed  Google Scholar 

  • Mallot HA (1985) An overall description of retinotopic mapping in the cat’s visual cortex areas 17, 18, and 19. Biol Cybern 52: 45–51

    Article  PubMed  CAS  Google Scholar 

  • Mallot HA (1987) Point images, receptive fields, and retinotopic mapping. TINS 10: 310–311

    Google Scholar 

  • Marr D (1982) Vision. Freeman, San Francisco

    Google Scholar 

  • Marroquin JL, Mitter S, Poggio T (1987) Probabilistic solution of ill-posed problems in computational vision. JAmerStatAssoc82: 76–89

    Google Scholar 

  • Mitchison G, Durbin R (1986) Optimal numberings of an Nx N array. SIAM JAIg Disc Meth 7: 571–582

    Article  Google Scholar 

  • Peters A, Jones EG (1984) Cerebral cortex Vol 1: Cellular components of the cerebral cortex Plenum Press, New York

    Google Scholar 

  • Poggio T, Torre V, Koch C (1985) Computational vision and regularization theory. Nature 317: 314–319

    Article  PubMed  CAS  Google Scholar 

  • Reitboeck HJ, Altmann J (1984) A model for size-and rotationinvariant pattern processing in the visual system. Biol Cybern 51: 113–121

    Article  PubMed  CAS  Google Scholar 

  • Regan D, Beverly KI (1978) Looming detectors in the human visual pathway. Vision Res 18: 415–421

    Article  PubMed  CAS  Google Scholar 

  • Sawchuk AA (1974) Space-variant image restoration by coordinate transforms. J Opt Soc Amer 64: 138144

    Google Scholar 

  • Schwartz EL (1980) Computational anatomy and functional architecture of striate cortex: a spatial mapping approach to perceptual coding. Vision Res 20: 645–669

    Article  PubMed  CAS  Google Scholar 

  • Seelen W v, Mallot HA (1988) Parallelism and redundancy in neural networks. In: Eckmiller R, Malsburg C v d (eds) Neural computers. Springer-Verlag, Berlin Heidelberg New York, pp 51–60

    Google Scholar 

  • Seelen W v, Mallot HA, Giannakopoulos F (1987) Characteristics of neuronal systems in the visual cortex. Biol Cybern 56: 37–49

    Article  Google Scholar 

  • Shen CW, Lee RCT, Chin YH (1987) A parallel nonlinear mapping algorithm. Int J Pattern Recog Artif Intellig1: 53–69

    Google Scholar 

  • Sherk H. (1986) Coincidence of patchy inputs from the lateral geniculate complex and area 17 to the cat’s Clare-Bishop area. J Comp Neurol 253: 105–120

    Article  PubMed  CAS  Google Scholar 

  • Swindale NV, Matsubara JA, Cynander MS (1987) Surface organization of orientation and direction selectiviy in cat area 18. JNeurosci7: 1414–1427

    Google Scholar 

  • Tusa RI, Rosenquist AC, Palmer LA (1979) Retinotopic organization of areas 18 and 19 in the cat. J Comp Neural 185: 657–678

    Article  CAS  Google Scholar 

  • Van Essen D (1985) Functional organization of primate visual cortex. In: Peters A, Jones EG (eds) Cerebral cortex, Vol 3. Plenum Press, New York, pp 259–329

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mallot, H.A., Von Seelen, W. (1989). Why Cortices? Neural Networks for Visual Information Processing. In: Ewert, JP., Arbib, M.A. (eds) Visuomotor Coordination. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0897-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0897-1_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0899-5

  • Online ISBN: 978-1-4899-0897-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics