Advertisement

Addendum: Is the Primary Lesion in Autism Related to the Locus Coeruleus?

  • Annica B. Dahlström

Abstract

In the autistic child a diversity of symptoms can be present, but some major common traits are obvious. One major sign of autism in childhood is the lack of a normal interest in people, things and events. Some children with autism even avoid actively to become at all involved with people or other aspects of the environment. They may dislike input from the surroundings, be it the loving touch of a parent, direct eye contact or other stimuli of any of their 5 senses.

Keywords

Locus Coeruleus Autistic Child Locus Coeruleus Neuron Brain Research Bulletin Locus Coeruleus Noradrenergic Neuron 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amit, Z., Brown, Z. W., Levitan, D. E., & Ogren, S. 0. (1977). Noradrenergic mediation of the positive properties of ethanol: I. Suppression of ethanol consumption in laboratory rats following dopamine-beta-hydroxylase inhibition. Archives internationale de Pharmacodynamie et de Thérapie, 230, 65–75.Google Scholar
  2. Aston-Jones, G. (1985). Behaviour functions of the locus coeruleus derived form cellular attributes. Physiological Psychology, 13, 118–126.Google Scholar
  3. Aston-Jones, G., Enni, M., Pieribone, V. A., Nickell, W. T., & Shipley, M. T. (1986). The brain nucleus coeruleus: Restricted afferent control of a broad efferent network. Science, 234,734-737.Google Scholar
  4. Brown, Z. W., Amit, Z., Levitan, D. E., Ogren, S. O., & Sutherland, E. A. (1977). Noradrenergic mediation of the positive reinforcing properties of ethanol: II. Extinctions of ethanol-drinking behavior in laboratory rats by inhibition of dopamine-beta-hydroxylase. Implications for treatment procedures in human alcoholics. Archives internationale de Pharmacodynamie et de Thérapie, 230, 76–82.Google Scholar
  5. Brown, Z. E., Amit, Z., Sinoyr, D., Rockman, G. E., & Ogren, S. O. (1978). Suppression of voluntary ingestion of morphine by inhibition of dopamine-betahydroxylase. Archives internationale de Pharmacodynamie et de Thérapie, 232, 102–110.Google Scholar
  6. Crow, T. J., Spear, P. J., & Arbuthnott, G. W. (1972). Intracranial self-stimulation with electrodes in the region of locus coeruleus. Brain Research, 26,275-287.Google Scholar
  7. Elam, M., Svensson, T. FI., & Thorén, P. (1986a). Locus coeruleus neurons and sympathetic nerves: activation by cutaneous sensory afferents. Brain Research, 358, 77–84.CrossRefGoogle Scholar
  8. Elam, M., Svensson, T. H., & Thorén, P. (1986b). Locus coeruleus neurons and symphathetic nerves: activation by visceral afferents. Brain Research, 375,117-125.Google Scholar
  9. Engel, J. (1989). Personal communication.Google Scholar
  10. Felten, D. L., Hallman, H., & Jonsson, G. (1982). Evidence for a neurotrophic role of noradrenaline neurons for the postnatal development of rat cerebral cortex. Journal ofNeurocytology, 11,119-135.Google Scholar
  11. Felten, D. L., & Sladek, J. R (1983). Monoamine distribution in primate brain. V. Monominergic nuclei: Anatomy Pathways, and local organization. Brain Research Bulletin, 11,171-284.Google Scholar
  12. Foote, S. L., Aston-Jones, G., & Bloom, F. E. (1980). Impulse activity of locus coeruleus neurons in awake rats and monkeys is a function of sensory stimulation and arousal. Proceedings of the National Academy of Sciences of the United States of America, 77, 3033–3037.Google Scholar
  13. Foote, S. L., & Bloom, F. E. (1979). Activity of locus coeruleus in the unanesthezised squirrel monkey. In E. Usdin, I. J. Kopin & J. Barchas (Eds.), Catecholamines: basic and clinical frontiers, vol 1. Proceedings of the 4th Int Catecholamine Symposium (pp 625–628 ). New York: Pergamon.Google Scholar
  14. Foote, S. L., & Bloom, F. E., & Aston-Jones, G. (1983). Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiological Review, 63,844-914.Google Scholar
  15. Foote, S. L., Freedman, R., & Oliver, A. P. (1975). Effects of putative neurotransmitters on neuronal activity in monkey auditory cortex. Brain Research, 86,229-242.Google Scholar
  16. Fuxe, K., Dahlström, A. (1964). Evidence for the existence of monoamine containing neurons in the central nervous system. I. Demonstration of the monoamins in the cellbodies of nervcells in the brain stem. Acta Physiologica Scandinavica, 62, suppl, 232.Google Scholar
  17. Fuxe, K., Dahlström, A. (1965). Evidence for the existence of monoamine containing neurons in the central nervous system. II. Experimentally induced changes in the intraneuronal aminolevels. Acta Physiologica Scandinavica, 64, suppl 247.Google Scholar
  18. Hajos, M. (1987). Capsaicin and brain monoaminergic mechanisms: Neuropharmacological and thermoregulatory aspects. University of Göteborg, Thesis.Google Scholar
  19. Jonsson, G. (1985). Hjärnan - en “dator” med plastiska egenskaper. (The brain - a “computer” with plasticity). Läkartidningen 82, 3178–3180 (Summary in English).Google Scholar
  20. Kitahama, K. L., Denoroy, N., Goldstein, M., Jouvet, M., & Pearson, J. (1988). Immunohistochemistry of tyrosine hydroxylase and phenylethanolamine-Nmethyltransferase in the human brain stem: description of adrenergic perilcarya and characterization of longitudinal catecholaminergic pathways. Neuroscience, 25,97-111.Google Scholar
  21. Loughlin, S. E., Foote, S. L., & Fallon, J. H. (1982). Locus coeruleus projections to cortex: topography, morphology and collateralization. Brain Research Bulletin, 9, 287–294.PubMedCrossRefGoogle Scholar
  22. Loughlin, S. E., Foote, S. L., & Grzanna, R. (1986). Efferent projections of nucleus locus coeruleus: Morphologic subpopulations have different efferent targets. Neuroscience: 18, 307–319.PubMedCrossRefGoogle Scholar
  23. Molliver, M. E., Grzanna, R., Lidov, H. G. W., Morrison, J. H., & Olschowka, J. A. (1982). In Cytochemical methods in Neuroanatomy (pp 255–277 ). New York: Alan R Liss Inc.Google Scholar
  24. Morrison, J. H., Foote, S. L., O’Connor, D., & Bloom, F. (1982). Laminar, tangenital and regional organization of noradrenergic innervation of the monkey cortex: Dopamine-ß-hydroxylase immunohistochemistry. Brain Research Bulletin, 9, 309 319.Google Scholar
  25. Nygren, L. G., & Olsson, L. (1977). A new major projection from locus coeruleus: The main source of noradrenergic nerve terminals in the ventral and dorsal columns of the spinal cord. Brain Research, 132, 85–93.PubMedCrossRefGoogle Scholar
  26. Ponzio, F., Hallman, H., & Jonson, G. (1981). Noradrenaline and dopamine interaction in rat brain during development. Medical Biology, 59, 161–169.PubMedGoogle Scholar
  27. Svensson, T. H. (1987). Peripheral, autonomic regulation of locus coeruleus noradrenergic neurons in brain: putative implications for psychiatry and psychopharmacology (Review). Psychopharmacology, 92, 1–7.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Annica B. Dahlström

There are no affiliations available

Personalised recommendations