Adhesion of Chromium, Nickel, and Copper to Polymers Containing Basic Functional Groups

  • S. R. Cain
  • L. J. Matienzo
  • F. Emmi


Surface acidity of chromium, nickel, and copper and their oxides was investigated by performing extended Hückel type band calculations on these materials. Interactions with basic functional groups encountered in polymers were investigated by studying the adsorption chemistry of ammonia on these metal (metal oxide) surfaces. Results of the calculations were analyzed in terms of the density of states, the total energy, and overlap populations.


Electron Lone Pair Ammonia Molecule Clean Metal Empty Orbital Basic Functional Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K.L. Mittal, Polymer Eng. Sci., 17, 467 (1977).CrossRefGoogle Scholar
  2. 2.
    F. M. Fowkes, in “Physicochemical Aspects of Polymer Surfaces,” K.L. Mittal, editor, vol. 2, p. 583, Plenum Press, New York, 1983.Google Scholar
  3. 3.
    J.C. Boiger and A.S. Michaels, in “Interface Conversion,” P. Weiss and D. Cheevers, editors, p. 3, Elsevier, New York, 1968.Google Scholar
  4. 4.
    J.C. Bolger, in “Adhesion Aspects of Polymer Coatings,” K.L. Mittal, editor, p. 3, Plenum Press, New York, 1983.CrossRefGoogle Scholar
  5. 5.
    S.R. Cain and L.J. Matienzo, J. Adhesion Sci. Technol. 2, 395 (1988).CrossRefGoogle Scholar
  6. 6.
    H. Brockmann, J. Adhesion, 22, 71 (1987).Google Scholar
  7. 7.
    J.S. Arlow, D.F. Mitchell, and M.J. Graham, J. Vac. Sci. Technol. A., 5, 573 (1987).CrossRefGoogle Scholar
  8. 8.
    D.D. Eley, C.H. Rochester, and M.S. Scurrell, J. Chem. Soc. Faraday Trans. I, 69, 660 (1973).CrossRefGoogle Scholar
  9. 9.
    A.A. Budneva and A.A. Davydov, React. Kinet. Catal. Lett., 11, 133 (1979).CrossRefGoogle Scholar
  10. 10.
    K.K. Al-Shammeri and J.M. Saleh, J. Phys. Chem., 90, 2906 (1986).CrossRefGoogle Scholar
  11. 11.
    I.C. Bassignana, K. Wagemann, J. Kuppers, and G. Ertl, Surface Sci., 175, 22 (1986).CrossRefGoogle Scholar
  12. 12.
    M. Grunze, P.A. Dowben, and C.R. Brundle, Surface Sci., 128, 311 (1983).CrossRefGoogle Scholar
  13. 13.
    A. Baiker and D. Monti, Ber. Bunsenges. Phys. Chem., 87, 602 (1983).CrossRefGoogle Scholar
  14. 14.
    T. Miyano, K. Kamei, Y. Sakisaka, and M. Onchi, Surface Sci. Lett., 148, L645 (1984).CrossRefGoogle Scholar
  15. 15.
    M.H. Matloob and M.W. Roberts, J. Chem. Soc. Faraday Trans. I., 73, 1393 (1977).CrossRefGoogle Scholar
  16. 16.
    C. Klauber, M.D. Alvey, and J.T. Yates, Surface Sei, 154, 139 (1985).CrossRefGoogle Scholar
  17. 17.
    Theoretical treatises of adsorption are extensive. For a brief sampling of the literature germane to this discussion, seeGoogle Scholar
  18. a.
    C. Zeng, Y. Apeloig, and R. Hoffmann, J. Am. Chem. Soc., 110, 749 (1988).CrossRefGoogle Scholar
  19. b.
    P. S. Bagus, K. Hermann, and C. W. Bauschlicher, J. Chem. Phys., 81, 1966 (1984).CrossRefGoogle Scholar
  20. 18.
    Consider, for example, simple crystal field theory. See, F.A. Cotton and G. Wilkinson, “Advanced Inorganic Chemistry: A Comprehensive Text,” 3rd ed., Wiley Interscience, New York, 1972.Google Scholar
  21. 19.
    NEWBAND1 is a program developed by the Hoffmann group at Cornell University. M.-H. Whangbo and R. Hoffmann, J. Am. Chem. Soc., 100 6093 (1978).CrossRefGoogle Scholar
  22. 20.
    R. Hoffmann and W.N. Lipscomb, J. Chem. Phys., 36, 2197 (1962).Google Scholar
  23. 21.
    R. Hoffmann, J. Chem. Phys., 39, 1397 (1963).CrossRefGoogle Scholar
  24. 22.
    S.R. Cain, Chem. Phys. Lett., 143, 361 (1988).CrossRefGoogle Scholar
  25. 23.
    S.R. Cain, L.J. Matienzo, and F. Emmi, J. Phys. Chem. Solids., 50, 87 (1989).CrossRefGoogle Scholar
  26. 24.
    C.J. Ballhausen and H.B. Gray, “Molecular Orbital Theory,” W.A. Benjamin, Inc., New York, 1965.Google Scholar
  27. 25.
    H.J. Monkhorst and J.D. Pack, Phys. Rev. B., 13, 5188 (1976).CrossRefGoogle Scholar
  28. 26.
    For a brief discussion of Brillouin zones, see N.W. Ashcroft and N.D. Mermin, “Solid State Physics,” Saunders, Philadelphia, 1976.Google Scholar
  29. 27.
    D.D. Coolbaugh, Ph.D. Thesis, State University of New York, Binghamton (1987).Google Scholar
  30. 28.
    J.-Y. Saillard and R. Hoffmann, J. Am. Chem. Soc., 106, 2006 (1984).CrossRefGoogle Scholar
  31. 29.
    C. Kittel, “Introduction to Solid State Physics,” 5th ed., Wiley and Sons, New York, 1976.Google Scholar
  32. 30.
    F.S. Galasso, “Structure and Properties of Inorganic Solids,” Pergamon Press, New York, 1970.Google Scholar
  33. 31.
    for chromium photoelectron spectra see, J.A. Leiro and E.E. Minni, Philos. Mag. B, 49, L61 (1984).CrossRefGoogle Scholar
  34. 32.
    for nickel photoelectron spectra seeGoogle Scholar
  35. a.
    Y. Sakisaka, T. Komeda, M. Onchi, H. Kato, S. Masuda, and K. Yagi, Phys. Rev. Lett., 58, 733 (1987).CrossRefGoogle Scholar
  36. b.
    M.G. Thube, S.K. Kulkarni. D. Huerta, and A.S. Nigavekar, Phys. Rev. B, 34, 6874 (1986).CrossRefGoogle Scholar
  37. 33.
    for copper photoelectron spectra see, P. Steiner, S. Hüfner, A.J. Freeman, and D.-S. Wang, Solid State Commun., 44, 619 (1982).CrossRefGoogle Scholar
  38. 34.
    See for exampleGoogle Scholar
  39. a.
    J.C. Slater, Phys. Rev., 36, 51 (1930).CrossRefGoogle Scholar
  40. b.
    G. Burns, J. Chem. Phys., 41, 1521 (1964).CrossRefGoogle Scholar
  41. 35.
    Mixing of orbitals in the molecular orbital formalism follows directly from second order perturbation theory. For more thorough discussions, see.Google Scholar
  42. a.
    T.H. Lowry and K.S. Richardson, “Mechanism and Theory in Organic Chemistry,” pp. 538–567, Harper and Row, New York, 1976.Google Scholar
  43. b.
    W.L. Jorgensen and L. Salem, “The Organic Chemist’s Book of Orbitals,” pp. 1–50, Academic Press, San Fransisco, 1973.Google Scholar
  44. c.
    R.B. Woodward and R. Hoffmann, “The Conservation of Orbital Symmetry,” Verlag Chemie, Germany, 1971.Google Scholar
  45. d.
    S.R. Cain, R. Hoffmann, and E.R. Grant, J. Phys. Chem., 85, 4046 (1981).CrossRefGoogle Scholar
  46. 36.
    for chromium oxide photoelectron spectra see, N. Beatham, A.F. Orchard, and G. Thornton, J. Phys. Chem. Solids, 42, 1051 (1981).CrossRefGoogle Scholar
  47. 37.
    for nickel oxide photoelectron spectra see, S.-B. Lee, J.-H. Boo, and W.-S. Ahn, Bull. Korean Chem. Soc, 8, 358 (1987).Google Scholar
  48. 38.
    For copper oxide photoelectron spectra see.Google Scholar
  49. a.
    D.D. Sarma, Ind. J. Chem. A, 19, 1046 (1980).Google Scholar
  50. b.
    M. Scrocco, Chem. Phys. Lett., 63, 52 (1979).CrossRefGoogle Scholar
  51. 39.
    M. Grunze, C. R. Brundle, and D. Tomanek, Surface Sci., 119, 133 (1982).CrossRefGoogle Scholar
  52. 40.
    F.P. Nitzer and T.E. Madey, Surface Sci., 119, 422 (1982).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • S. R. Cain
    • 1
  • L. J. Matienzo
    • 1
  • F. Emmi
    • 1
  1. 1.IBM Systems Technology DivisionEndicottUSA

Personalised recommendations