Surface Spectroscopic Techniques Applied to Metallized Plastics

  • N. J. DiNardo

Abstract

To ultimately understand macroscopic adhesion in metallized plastics, fundamental metal-organic bonding chemistry at metal-polymer interfaces must be probed. Experimental surface spectroscopies have generally produced information for well-defined systems in surface chemistry. New applications of surface techniques to complex systems such as metal-polymer interfaces have recently produced exciting new developments in studies related to adhesion technology. Recent studies of electronic and vibrational structure and the morphology of metal-polymer interfaces are reviewed. Due to the high degree of interest in the particular system, we concentrate upon the metal-polyimide interface as a means to describe the scientific approach. The general applicability of these techniques and future directions are discussed.

Keywords

Core Level Electron Energy Loss Spectroscopy Surface Science Electron Binding Energy Polyamic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W.D. Grobman, J. Vac. Sci. Technol. A3, 725 (1985).Google Scholar
  2. 2.
    A.J. Blodgett and D.R. Barbour, IBM J. Res. Develop. 26, 30 (1982).CrossRefGoogle Scholar
  3. 3.
    A.J. Blodgett, Sci. Am. 249, 86 (1983).CrossRefGoogle Scholar
  4. 4.
    K.L. Mittal, J. Vac. Sci. Technol. 13, 19 (1976).CrossRefGoogle Scholar
  5. 5.
    D.T. Clark, CRC Crit. Rev. Solid State Mater. Sci. 8, 1 (1978).CrossRefGoogle Scholar
  6. 6.
    D.T. Clark, H.R. Thomas, and D. Shuttleworth, J. Polym. Sci. Polym. Lett. Ed. 16, 465 (1978).CrossRefGoogle Scholar
  7. 7.
    James M. Burkstrand, J. Vac. Sci. Technol. 16, 363 (1979).CrossRefGoogle Scholar
  8. 8.
    James M. Burkstrand, J. Appl. Phys. 52, 4795 (1981).CrossRefGoogle Scholar
  9. 9.
    N.J. Chou and C.H. Tang, J. Vac. Sci. Technol. A2, 751 (1984).Google Scholar
  10. N.J. Chou and C.H. Tang, in “Surface and Colloid Science in Computer Technology”, K.L. Mittal, ed., pp. 287–298 (Plenum, New York, 1987).CrossRefGoogle Scholar
  11. 10.
    N.J. DiNardo, J.E. Demuth, W.A. Thompson, and P.G. Ledermann, Rev. Sci. Instrum. 55, 1492 (1984).CrossRefGoogle Scholar
  12. 11.
    Polyimide samples are typically fabricated from DuPont 5878 spun on a flat substrate.Google Scholar
  13. 12.
    P.O. Hahn, G.W. Rubloff, and P.S. Ho, J. Vac. Sci. Technol. A2, 756 (1984).Google Scholar
  14. 13.
    J.R. Salem, F.O. Sequeda, J. Duran, W.Y. Lee, and R.M. Yang, J. Vac. Sci. Technol. A4 369 (1986).Google Scholar
  15. 14.
    Nobuyuki Takahashi, Do Y. Yoon, and William Parrish, Macromolecules, 17, 2583 (1984).CrossRefGoogle Scholar
  16. 15.
    Hatsuo Ishida, Stephen T. Wellinghoff, Eric Baer, and Jack L. Koenig, Macromolecules, 13, 826 (1980).CrossRefGoogle Scholar
  17. Stephen T. Wellinghoff, Hatsuo Ishida, Jack L. Koenig, and Eric Baer, Macromolecules, 13, 834 (1980).CrossRefGoogle Scholar
  18. 16.
    N. Ueno, W. Gädeke, E.E. Koch, R. Engelhardt, and R. Dudde, J. Elect. Spect. and Rel. Phen. 36, 143 (1985).CrossRefGoogle Scholar
  19. 17.
    D.R. Penn, Phys. Rev. B13, 5248 (1976).Google Scholar
  20. 18.
    H. Liehr, P.A. Thiry, J.J. Pireaux, and R. Caudano, Phys. Rev. B33, 5682 (1986).Google Scholar
  21. 19.
    L. Ley and M. Cardona, eds., “Photoemission in Solids I and II” (Springer-Verlag, New York, 1979).Google Scholar
  22. 20.
    E.W. Plummer and W. Eberhardt, in “Advances in Chemical Physics”, I. Prigogine and Stuart A. Rice, eds., Vol. 49, pp. 533 (Wiley, New York, 1982).CrossRefGoogle Scholar
  23. 21.
    H. Ibach and D.L. Mills, “Electron Energy Loss Spectroscopy and Surface Vibrations” (Academic, New York, 1982).Google Scholar
  24. 22.
    Wei-Kan Chu, James W. Mayer, and Marc-A. Nicolet, “Backscattering Spectrometry” (Academic, New York, 1978).Google Scholar
  25. 23.
    R. Haight, R.C. White, B.D. Silverman, and P.S. Ho, J. Vac. Sci. Technol. A6, 2188 (1988).Google Scholar
  26. R. Haight, B.D. Silverman, R.C. White, P.S. Ho, and A.R. Rossi, Mat. Res. Soc. Symp. Proc, 108, 233 (1988).CrossRefGoogle Scholar
  27. 24.
    R.C. White, R. Haight, B.D. Silverman, and P.S. Ho, Appl. Phys. Lett. 51, 481 (1987).CrossRefGoogle Scholar
  28. 25.
    A.R. Rossi, P.N. Sanda, B.D. Silverman, and P.S. Ho, Organometallics 6, 580 (1987).CrossRefGoogle Scholar
  29. B.D. Silverman, J.W. Bartha, J.G. Clabes, P.S. Ho, J. Polym. Sci.: Pt. A: Polym. Chem., 24, 3325 (1986).CrossRefGoogle Scholar
  30. 26.
    P.L. Buchwalter and A.I. Baise, in “Polyimides: Synthesis, Characterization, and Applications”, K.L. Mittal, ed., Vol. 1, P. 537 (Plenum, New York, 1984).Google Scholar
  31. 27.
    A. Toth, I. Bertoty, T. Szekely, J.N. Sazanov, T.A. Antonova, A.V. Shchukarev, and A.V. Gribanov, Surf. Interface Anal. 8, 261 (1986).CrossRefGoogle Scholar
  32. 28.
    J.L. Jordan, P.N. Sanda, J.F. Morar, C.A. Kovac, F.J. Himpsel, and R.A. Pollak, J. Vac. Sci. Technol. A4, 1046 (1986).Google Scholar
  33. J.L. Jordan, C.A. Kovac, J.F. Morar, and R.A. Pollak, Phys. Rev. B36, 1369 (1987).Google Scholar
  34. 29.
    P.N. Sanda, J.W. Bartha, J.G. Clabes, J.L. Jordan, C. Feger, B.D. Silverman, and P.S. Ho, J. Vac. Sci. Technol. A4, 1035 (1986).Google Scholar
  35. 30.
    J.G. Clabes, M.J. Goldberg, A. Viehbeck, and C.A. Kovac, J. Vac. Sci. Technol. A6, 985 (1988).Google Scholar
  36. 31.
    M.J. Goldberg, J.G. Clabes, and C.A. Kovac, J. Vac. Sci. Technol. A6, 991 (1988) and references therein.Google Scholar
  37. 32.
    J.L. Brédas and T.C. Clarke, J. Chem. Phys. 86, 253 (1987).CrossRefGoogle Scholar
  38. 33.
    C.B. Duke, Mol. Cryst. Liq. Cryst. 50, 63 (1979).CrossRefGoogle Scholar
  39. 34.
    R.M. Tromp, F. LeGoues, and P.S. Ho, J. Vac. Sci. Technol. A3, 782 (1985).Google Scholar
  40. 35.
    M.J. Goldberg, unpublished results (1988).Google Scholar
  41. 36.
    J.L. Jordan-Sweet, C.A. Kovac, M.J. Goldberg, and J.F. Morar, J. Chem. Phys. 89, 2482 (1988).CrossRefGoogle Scholar
  42. 37.
    J.J. Pireaux, C. Grégoire, P.A. Thiry, R. Caudano, and T.C. Clarke, J. Vac. Sci. Technol. A5, 598 (1987).Google Scholar
  43. J.J. Pireaux, C. Grégoire, M. Vermeersch, P.A. Thiry, and R. Caudano, Surf. Sci. 189/190, 903 (1987).CrossRefGoogle Scholar
  44. 38.
    J.J. Pireaux, M. Vermeersch, C. Grégoire, P.A. Thiry, R. Caudano, and T.C. Clarke, J. Chem. Phys. 88, 3353 (1988).CrossRefGoogle Scholar
  45. 39.
    Lj. Atanasoska, Steven G. Anderson, H.M. Meyer, III, Zhangda Lin, and J.H. Weaver, J. Vac. Sci. Technol. A5, 3325 (1987).Google Scholar
  46. 40.
    J.W. Bartha, P.O. Hahn. F. LeGoues, and P.S. Ho, J. Vac. Sci. Technol. A3, 1390 (1985).Google Scholar
  47. 41.
    F.S. Ohuchi and S.C. Freilich, J. Vac. Sci. Technol. A4, 1039 (1986).Google Scholar
  48. 42.
    Steven G. Anderson, H.M. Meyer, III, and J.H. Weaver, J. Vac. Sci. Technol. A6, 2205 (1988).Google Scholar
  49. 43.
    L.J. Atanasoska, H.M. Meyer III, Steven G. Anderson, and J.H. Weaver, J. Vac. Sci. Technol. A6, 2175 (1988).Google Scholar
  50. 44.
    N.J. DiNardo, Ph. Avouris, and J.E. Demuth, J. Chem. Phys. 81, 2169 (1984).CrossRefGoogle Scholar
  51. 45.
    H. Ibach, to be published.Google Scholar
  52. 46.
    W.D. Jennings, G.S. Chottiner, R.W. Hoffman, and I. Lundström, and W.R. Salaneck, Bull. Am. Phys. Soc. 29, 359 (1984).Google Scholar
  53. 47.
    J.H. Wandass and J.A. Gardella, Surf. Sci. Lett. 150, L107 (1985).CrossRefGoogle Scholar
  54. Joseph H. Wandass and Joseph A. Gardella, Langmuir, 2, 543 (1986).CrossRefGoogle Scholar
  55. 48.
    1 meV = 8.0 65 cm−1 Google Scholar
  56. 49.
    N.J. DiNardo, J.E. Demuth, and T.C. Clarke, J. Chem. Phys. 85, 6739 (1986).CrossRefGoogle Scholar
  57. 50.
    N.J. DiNardo, J.E. Demuth, and T.C. Clarke, J. Vac Sci. Technol., A4, 1060 (1986).Google Scholar
  58. 51.
    B.D. Silverman, to be published.Google Scholar
  59. 52.
    The gold film circumvented problems with a large loss background due to electron-induced excitations in the Si substrate.Google Scholar
  60. 53.
    J.J. Pireaux, P.A. Thiry, R. Caudano, and P. Pfluger, J. Chem. Phys. 84, 6452 (1986).CrossRefGoogle Scholar
  61. 54.
    N.J. DiNardo, J.E. Demuth, and T.C. Clarke, Chem. Phys. Lett. 121, 239 (1985).CrossRefGoogle Scholar
  62. 55.
    P.O. Hahn, G.W. Rubloff, J.W. Bartha, F. LeGoues, R. Tromp, and P.S. Ho, Mat. Res. Soc. Symp. Proc, 40, 247 (1985).Google Scholar
  63. 56.
    B.N.J. Persson and J.E. Demuth, Phys. Rev. B30, 5968 (1984).Google Scholar
  64. 57.
    R.J. Purtell, private communication (1988).Google Scholar
  65. 58.
    F.K. LeGoues, B.D. Silverman, and P.S. Ho, J. Vac. Sci. Technol. A6 2200 (1988).Google Scholar
  66. 59.
    G. Binnig and H. Rohrer, Ch. Gerber, and E. Weibel, Phys. Rev. Lett. 49, 57 (1982).CrossRefGoogle Scholar
  67. 60.
    Tycho Sleator and Robert Tycho, Phys. Rev. Lett. 60, 1418 (1988).CrossRefGoogle Scholar
  68. 61.
    Dawn A. Bonell and Marie Angelopoulos, to be published.Google Scholar
  69. 62.
    V.M. Hallmark, A. Leone, S. Chiang, J.D. Swalen, and J.F. Rabolt, Polym. Prepr. 28, 22 (1987).Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • N. J. DiNardo
    • 1
  1. 1.Department of Physics and Atmospheric ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations