Skip to main content

Antibiotics in Postirradiation Infection

  • Chapter
Treatment of Radiation Injuries
  • 75 Accesses

Abstract

Increasing doses of radiation are associated with progressively higher mortality rates in animals,1–3 largely because of their increased susceptibility to various endogenous or exogenous pathogens.3 After irradiation, enteric organisms were recovered from lymphatic organs as well as from the bloodstream of these animals.4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gordon, L. E., Ruml, D., Hahne, J. H., et al. Studies on susceptibilities to infection following ionizing irradiation. IV. The pathogenesis of the endogenous bacteremia in mice. J Exp Med 102: 413–424, 1955.

    Article  PubMed  CAS  Google Scholar 

  2. Bennett, L. R., Rekers, P. E., and Howland, J. Influence of infection on hematological effects and mortality following mid-lethal roentgen irradiation. Radiology 57: 99–105, 1951.

    PubMed  CAS  Google Scholar 

  3. Benacerraf, B. Influence of irradiation on resistance to infection. Bacteriol Rev 24: 35–40, 1960.

    PubMed  CAS  Google Scholar 

  4. Brook, I., Walker, R. I., and MacVittie, T. J. Effects of radiation dose on the recovery of aerobic and anaerobic bacteria from mice. Can J Microbiol 37: 719–722, 1966.

    Google Scholar 

  5. Carter, P. B., and Collins, F. M. The route of enteric infection in normal mice. J Exp Med 139: 1189–1203, 1974.

    Article  PubMed  CAS  Google Scholar 

  6. Miller, C. P. The effect of irradiation on natural resistance to infection. Ann NY Acad Sci 66: 250–291, 1956.

    Article  Google Scholar 

  7. Collins, F. M. Mucosal defenses against Salmonella infection in the mouse. J Infect Dis 129: 503519, 1956.

    Google Scholar 

  8. Brook, I., and Elliott, T. B. Treatment of wound sepsis in irradiated mice. Int J Radiat Biol 56: 75–82, 1989.

    Article  PubMed  CAS  Google Scholar 

  9. Schechmeister, I. L., Bond, V. P., and Swift, M. N. The susceptibility of irradiated mice to infection as a function of post-irradiation time. J Immunol 68: 87–95, 1952.

    Google Scholar 

  10. Kaplan, H. W., Speck, R. S., and Jawetz, F. Impairment of antimicrobial defenses following total body irradiation of mice. J Lab Clin Med 40: 682–691, 1952.

    PubMed  CAS  Google Scholar 

  11. Hammond, C. W. The treatment of postirradiation infection. Radiat Res 1: 448–458, 1954.

    Article  PubMed  CAS  Google Scholar 

  12. Hammond, C. W., Vogel, H. H., Clark, H. W., et al. The effect of streptomycin therapy in mice irradiated with fast neutrons. Radiat Res 2: 359–360, 1953.

    Google Scholar 

  13. Miller, C. P., Hammond, C. W., Tompkins, M., et al. Treatment of postirradiation infection with antibiotics; an experimental study on mice. J Lab Clin Med 39: 462–479, 1952.

    PubMed  CAS  Google Scholar 

  14. Brook, I., Walker, R. I., and MacVittie, T. J. Effect of antimicrobial therapy on the gut flora and bacterial infection in irradiated mice. Intl Radiat Biol 5: 709–716, 1988.

    Article  Google Scholar 

  15. Bodey, G. P. Infection in cancer patients: A continuing association. Am J Med 81 (Suppl 1A): 1126, 1986.

    Google Scholar 

  16. Gale, R. P. Immediate medical consequences of nuclear accidents: Lessons from Chernobyl. JAMA 285: 625–628, 1987.

    Google Scholar 

  17. EORTC Gnotobiotic Group. Protective isolation and antimicrobial decontamination in patients with high susceptibility to infection. Infection 6: 175–191, 1978.

    Article  Google Scholar 

  18. Reiter, B., Gee, T., Young, L., et al. Use of oral antibiotics during remission induction in adult patients with acute nonlymphoblastic leukemias (ANLL). Clin Res 21: 652, 1973.

    Google Scholar 

  19. Storring, R. A., Jameson, B., McElwain, T. J., et al. Oral nonabsorbed antibiotics prevent infection in acute nonlymphoblastic leukemia. Lancet 11: 837–840, 1977.

    Article  Google Scholar 

  20. Berg, R. D. Promotion of the translocation of enteric bacteria from the gastrointestinal tracts of mice by oral treatment with penicillin, clindamycin, or metronidazole. Infect Immun 33: 854–861, 1981.

    PubMed  CAS  Google Scholar 

  21. van der Waaij, O., Hofstra, H., and Wiegersma, N. Effect of beta-lactam antibiotics on the resistance of the digestive tract of mice to colonization. J Infect Dis 146: 417–422, 1982.

    Article  PubMed  Google Scholar 

  22. Bender, J. F., Schimpff, S. C., Young, V. M., et al. A comparative trial of tobramycin versus gentamicin in combination with vancomycin and nystatin for alimentary tract suppression in leukemia patients. Eur J Cancer 15: 35–44, 1979.

    Google Scholar 

  23. Gurwith, M. J., Brunton, H. L., Lank, B. A., et al. A prospective controlled investigation of prophylactic trimethoprim-sulfamethoxazole in hospitalized granulocytopenic patients. Am J Med 66: 248–256, 1979.

    Article  PubMed  CAS  Google Scholar 

  24. Dekker, A. W., Rozenberg-Arska, M., Sixma, J. J., et al. Prevention of infection by trimethoprimsulfamethoxazole plus amphotericin B in patients with acute nonlymphoblastic leukemia. Ann Intern Med 95: 555–559, 1981.

    CAS  Google Scholar 

  25. Pizzo, P. A., Robichaud, J., Brenda, K. E., et al. Oral antibiotic prophylaxis in patients with cancer. A double-blind randomized placebo-controlled trial. J Pediatr 102: 125–133, 1983.

    Article  PubMed  CAS  Google Scholar 

  26. Bauernfeind, A., and Petermiller, C. In vitro activity of ciprofloxacin, norfloxacin and nalidixic acid. Eur J Clin Microbiol 2:111–115, 1983.

    Article  PubMed  CAS  Google Scholar 

  27. Hathorn, J. W., Rubin, M., and Pizzo, P. A. Empiric antibiotic therapy in febrile neutropenic cancer patients: Clinical efficacy and impact of monotherapy. Antimicrob Agents Chemother 31: 971–977, 1987.

    Article  PubMed  CAS  Google Scholar 

  28. Alpen, E. L., and Sheline, G. E. Combined effects of thermal burn and whole body x-irradiation on survival time and mortality. Ann Surg 140: 113–118, 1954.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Brook, I. (1990). Antibiotics in Postirradiation Infection. In: Browne, D., Weiss, J.F., MacVittie, T.J., Pillai, M.V. (eds) Treatment of Radiation Injuries. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0864-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0864-3_9

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0866-7

  • Online ISBN: 978-1-4899-0864-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics