Rescue of Lethally Irradiated Animals

Therapeutic Use of rhG-CSF and rhGM-CSF in Preclinical Models of Radiation-Induced Marrow Aplasia
  • Thomas J. MacVittie
  • Rodney L. Monroy


Three recent radiation accidents—the reactor explosion in Chernobyl, U.S.S.R.,1 the external and internal cesium-137 exposure in Goiânia, Brazil,2 and the cobalt-60 exposure of three technicians in El Salvador, San Salvador—exemplify the usual conditions of accidental radiation exposure. The exposure environment is ill defined and uncontrolled.3 The radiation delivery is heterogeneous and nonuniform, and may vary in rate, quality, and energy. It is the uncontrolled nature of the radiation exposure, in addition to the potential for shielding, that forecasts the possible sparing of cells essential for survival, i.e., the stem cells of the hematopoietic system and the gastrointestinal system. Radiation experiments in which areas of the bone marrow were shielded have demonstrated the potential of spared bone marrow cells to repopulate the hematopoietic tissue and to increase not only the production of granulocytes and platelets but also the chances of surviving an otherwise lethal dose of radiation.4–11


Preclinical Model Clinical Support Peripheral White Blood Cell Radiation Accident Survive Stem Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Guskova, A. Biomedical Section of the Soviet Report on Chernobyl, Appendix 7, Medical Biological Problems, International Atomic Energy Agency (IAEA ), Vienna, 1986.Google Scholar
  2. 2.
    Roberts, L. Radiation accident grips Goiânia. Science 238: 1028–1031, 1989.CrossRefGoogle Scholar
  3. 3.
    Baverstock, K. F., and Ash, P. J. N. O. A review of radiation accidents involving whole body exposure and the relevance to the LD50160 for man. Br J Radio! 56: 837, 1983.CrossRefGoogle Scholar
  4. 4.
    Cole, L. J., Haire, H. M., and Alpen, E. L. Partial shielding of dogs: Effectiveness of small external epicondylar lead cuffs against lethal x-radiation. Radiat Res 32: 54–63, 1967.Google Scholar
  5. 5.
    Croizat, H., Frindel, E., and Tubiana, M. Abscopal effect of irradiation on haemopoietic stem cells of shielded bone marrow-role of migration. Int J Radiat Biol 30: 347–358, 1976.CrossRefGoogle Scholar
  6. 6.
    Gidali, J., and Lajtha, L. G. Regulation of hemopoietic stem cell turnover in partially irradiated mice. Cell Tissue Kinet 5: 147–157, 1972.Google Scholar
  7. 7.
    Hansen, C. L., Michaelson, S. M., and Howland, J. W. Lethality of upper body exposure to x-radiation in beagles. Public Health Rep 76: 242, 1961.PubMedCrossRefGoogle Scholar
  8. 8.
    Knospe, W. H., Blom, J., and Crosby, W. H. Regeneration of locally irradiated bone marrow. I. Dose dependent, long-term changes in the rat, with particular emphasis upon vascular and stromal reaction. Blood 28: 398–415, 1966.PubMedGoogle Scholar
  9. 9.
    Maillie, H. D., Krasavage, W., and Mermagen, H. On the partial body irradiation of the dog. Health Phys 12: 833–837, 1966.CrossRefGoogle Scholar
  10. 10.
    Maloney, M. A., and Patt, H. M. Migration of cells from shielded to irradiated marrow. Blood 39: 804–808, 1972.PubMedGoogle Scholar
  11. 11.
    Nothdurft, W., Calvo, W., Klinnert, V., et al. Acute and long term alterations in the granulocyte/ macrophage progenitor cell (GM-CFC) compartment of dogs after partial-body irradiation. Int J Radiat Oncol Biol Phys 12: 949–957, 1986.Google Scholar
  12. 12.
    Broxmeyer, H. E., Williams, D. E., and Cooper, S. The influence in vivo of natural murine interleukin-3 on the proliferation of myeloid progenitor cells in mice recovering from sublethal dosages of cyclophosphamide. Leuk Res 11 (2): 201–205, 1987.PubMedCrossRefGoogle Scholar
  13. 13.
    Cohen, A. M., Zsebo, K. M., Inoue, H., et al. In vivo stimulation of granulopoiesis by recombinant human granulocyte colony-stimulating factor. Proc Nat/ Acad Sci USA 84:2484–2488, 1987.Google Scholar
  14. 14.
    Fujisawa, M., Kobayashi, Y., Okabe, T., et al. Recombinant human granulocyte colony-stimulating factor induces granulocytosis in vivo. Jpn J Cancer Res 77: 866–869, 1986.PubMedGoogle Scholar
  15. 15.
    Kindler, V., Thorens, B., deKossodo, S., et al. Stimulation of hematopoiesis in vivo by recombinant bacterial murine interleukin 3. Proc Natl Acad Sci USA 83: 1001–1005, 1986.PubMedCrossRefGoogle Scholar
  16. 16.
    Kobayashi, Y., Okabe, T., Urabe, A., et al. Human granulocyte colony stimulating factor produced by Escherichia col/ shortens the period of granulocytopenia induced by irradiation in mice. Jpn J Cancer Res 78: 763–770, 1987.Google Scholar
  17. 17.
    Lord, B. I., Molineux, G., Testa, N. G., et al. The kinetic response of haemopoietic precursors cells, in vivo, to highly purified, recombinant interleukin 3. Lymphokine Res 5: 97–104, 1986.PubMedGoogle Scholar
  18. 18.
    Metcalf, D., Begley, C. G., Johnson, G. R., et al. Effects of purified bacterially synthesized murine multi-CSF (IL-3) on hematopoiesis in normal adult mice. Blood 68: 46–57, 1986.PubMedGoogle Scholar
  19. 19.
    Moore, M. A. S., and Warren, D. J. Synergy of interleukin-1 and granulocyte colony stimulating factor: In vivo stimulation of stem cell recovery and hematopoietic regeneration following 5-fluorouracil treatment of mice. Proc Nat! Acad Sci USA 84: 7134–7138, 1987.CrossRefGoogle Scholar
  20. 20.
    Morrissey, P., Charrier, K., Bressler, L., et al. The influence of I L-1 treatment on the reconstitution of the hematopoietic and immune systems after sublethal radiation. J Immunol 140: 4204–4210, 1988.PubMedGoogle Scholar
  21. 21.
    Shimamura, M., Kobayashi, Y., Yuo, A., et al. Effect of human recombinant granulocyte colony-stimulating factor on hemopoietic injury in mice induced by 5-fluorouracil. Blood 69: 353–355, 1987.PubMedGoogle Scholar
  22. 22.
    Stork, L., Barczuk, L., Kissinger, M., et al. Interleukin-1 accelerates murine granulocyte recovery following treatment with cyclophosphamide. Blood 73: 938–944, 1989.PubMedGoogle Scholar
  23. 23.
    Tamura, M., Hattori, K., Nomura, H., et al. Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun 142: 454–460, 1987.PubMedCrossRefGoogle Scholar
  24. 24.
    Tanikawa, S., Nakao, I., Tsuneoka, K., et al. Effects of recombinant granulocyte colony stimulating factor (rG-CSF) and recombinant granulocyte-macrophage colony stimulating factor (rGMCSF) on acute radiation hematopoietic injury in mice. Exp Hematol 17: 883–888, 1989.PubMedGoogle Scholar
  25. 25.
    Lam, C., Mayer, P., Besemer, J., et al. Differential activation of dog, human, and monkey peripheral blood granulocytes by recombinant human granulocyte-macrophage colony-stimulating factor, in vivo hematopoietic activity in dogs. J Cell Biochem [Suppl] 13c: H401 (Abstract), 1989.Google Scholar
  26. 26.
    Lothrup, C. D., Jr., Warren, D. J., Souza, L. M., et al. Connection of canine cyclic hematopoiesis with recombinant human granulocyte colony stimulating factor. Blood 72: 1324–1328, 1988.Google Scholar
  27. 27.
    MacVittie, T. J., D’Alesandro, M. M., Monroy, R. L., et al. Stimulation of hemopoiesis in the canine by in vivo administration of recombinant human GM-CSF (rhGM-CSF). J Cell Biochem [Suppl] 12A: 152 (Abstract), 1988.Google Scholar
  28. 28.
    MacVittie, T. J., Schwartz, G. N., Monroy, R. L., et al. Stimulation of hemopoiesis in the canine by administration of recombinant human interleukin-1. Exp Hematol 16: 537 (Abstract), 1988.Google Scholar
  29. 29.
    Schuening, F. G., Storb, R., Goehle, S., et al. Stimulation of canine hematopoiesis by recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hematol 17: 889–894, 1989.Google Scholar
  30. 30.
    Schuening, F. G., Storb, R., Goehle, S., et al. Effect of recombinant human granulocyte colony-stimulating factor on hematopoiesis of normal dogs and on hematopoietic recovery after otherwise lethal total-body irradiation. Blood 74: 1308–1313, 1989.PubMedGoogle Scholar
  31. 31.
    MacVittie, T. J., Monroy, R. L., Patchen, M. L., et al. Therapeutic use of recombinant human G-CSF (rhG-CSF) in a canine model of sublethal and lethal whole-body irradiation. Int J Radiat Bio157: 723–736, 1990.Google Scholar
  32. 32.
    Donahue, R. E., Wang, E. A., Stone, D. K., et al. Stimulation of haematopoiesis in primates by continuous infusion of recombinant human GM-CSF. Nature 321: 872–875, 1986.PubMedCrossRefGoogle Scholar
  33. 33.
    Donahue, R. E., Seehra, J., Metzger, M., et al. Human IL-3 and GM-CSF act synergistically in stimulating hematopoiesis in primates. Science 241: 1820–1823, 1988.PubMedCrossRefGoogle Scholar
  34. 34.
    Gasparetto, C., Laver, J., Abboud, M., et al. Effects of interleukin-1 on hemopoietic progenitors: Evidence of stimulatory and inhibitory activities in a primate model. Blood 74: 547–550, 1989.PubMedGoogle Scholar
  35. 35.
    Krumwieh, D., and Seiler, F. R. In vivo effects of recombinant colony stimulating factors on hematopoiesis in cynomolgus monkeys. Transplant Proc 21:2964–2967, 1989.Google Scholar
  36. 36.
    Mayer, P., Lam, C., Obenaus, H., et al. Recombinant human GM-CSF induces leukocytosis and activates peripheral blood polymorphonuclear neutrophile in non-human primates. Blood 70: 206–213, 1987.PubMedGoogle Scholar
  37. 37.
    Monroy, R. L., Skelly, R. R., Taylor, P., et al. Recovery from severe hemopoietic suppression using recombinant human granulocyte-macrophage colony-stimulating factor. Exp Hematol 16: 344–348, 1988.PubMedGoogle Scholar
  38. 38.
    Welte, K., Bonilla, M. A., Gillio, A. P., et al. Recombinant human granulocyte colony-stimulating factor: Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med 165: 941–948, 1987.CrossRefGoogle Scholar
  39. 39.
    Souza, L. M., Boone, T. C., Gabrilove, J., et al. Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 232: 61–65, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    Monroy, R. L., MacVittie, T. J., Darden, J. H., et al. The rhesus monkey: A primate model for hemopoietic stem cell studies. Exp Hematol 14: 904–911, 1986.Google Scholar
  41. 41.
    MacVittie, T. J., Monroy, R. L., Patchen, M. L., et al. Acute lethality and radiosensitivity of the canine hemopoietic system to cobalt-60 gamma and mixed neutron-gamma irradiation. In: Response of Different Species to Total Body Irradiation. J. J. Broerse and T. J. MacVittie, Eds. Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1984, pp. 113–129.CrossRefGoogle Scholar
  42. 42.
    Broerse, J. J., van Bekkum, D. W., Hollander, C. F., et al. Mortality of monkeys after exposure to fission neutrons and the effect of autologous bone marrow transplantation. Int J Radiat Biol 34: 253–264, 1978.CrossRefGoogle Scholar
  43. 43.
    Jackson, D. P., Sorenson, D. K., Cronkite, E. P., et al. Effectiveness of transfusion of fresh and lyophilized platelets in controlling bleeding due to thrombocytopenia. J Clin Invest 38: 1689 1697, 1959.Google Scholar
  44. 44.
    Perman, V., Cronkite, E. P., Bond, V. P., et al. The regenerative ability of hemopoietic tissue following lethal x-irradiation in dogs. Blood 19: 724–737, 1962.PubMedGoogle Scholar
  45. 45.
    Sorenson, D. K., Bond, V. P., Cronkite, E. P., et al. An effective therapeutic regimen for the hemopoietic phase of the acute radiation syndrome in dogs. Radiat Res 13: 669–676, 1960.CrossRefGoogle Scholar
  46. 46.
    Ferrero, D., Tarella, C., Badoni, R., et al. Granulocyte-macrophage colony-stimulating factor requires interaction with accessory cells or granulocyte colony-stimulating factor for full stimulation of human myeloid progenitors. Blood 73: 402–405, 1989.PubMedGoogle Scholar
  47. 47.
    McNiece, I. K., Andrews, R., Stewart, M., et al. Action of interleukin-3, G-CSF, and GMCSF on highly enriched human hematopoietic progenitor cells: Synergistic interaction of GMCSF plus G-CSF. Blood 74: 110–114, 1989.PubMedGoogle Scholar
  48. 48.
    Ikebuchi, K., Clark, S. C., Ihle, J. N., et al. Granulocyte colony-stimulating factor enhances interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 85: 3445–3450, 1988.PubMedCrossRefGoogle Scholar
  49. 49.
    Broxmeyer, H. E., Williams, D. E., Hangoc, G., et al. Synergistic myelopoietic actions in vivo after administration to mice of combinations of purified natural murine colony-stimulating factor 1, recombinant murine interleukin 3, and recombinant murine granulocyte/macrophage colony-stimulating factor. Proc Natl Acad Sci USA 84: 3871–3875, 1987.PubMedCrossRefGoogle Scholar
  50. 50.
    Williams, D. E., Hangoc, G., Cooper, S., et al. The effects of purified recombinant murine interleukin-3 and/or purified natural murine CSF-1 in vivo on the proliferation of murine high-and low-proliferative potential colony-forming cells: Demonstration of in vivo synergism. Blood 70 (2): 401–403, 1987.PubMedGoogle Scholar
  51. 51.
    Vriesendorp, H. M., and van Bekkum, D. W. Susceptibility to total body irradiation. In: Response of Different Species to Total Body Irradiation. J. J. Broerse and T. J. MacVittie, Eds. Martinus Nijhoff Publishers, Dordrecht, Netherlands, 1984, pp. 43–57.Google Scholar
  52. 52.
    Butturini, A., DeSouza, P. C., Gale, R. P., et al. Use of recombinant granulocyte-macrophage colony stimulating factor in the Brazil radiation accident. Lancet 11: 471–475, 1988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Thomas J. MacVittie
    • 1
  • Rodney L. Monroy
    • 2
  1. 1.Department of Experimental HematologyArmed Forces Radiobiology Research InstituteBethesdaUSA
  2. 2.Immunobiology and Transplantation BranchNaval Medical Research InstituteBethesdaUSA

Personalised recommendations