Blood and Bone Marrow Products in the Treatment of Radiation Injury

  • C. Robert Valeri


The recent nuclear accidents at Chernobyl, U.S.S.R., and Goiânia, Brazil, have heightened concerns about the immediate availability of personnel, facilities, equipment, blood, and blood products for treating individuals exposed to radiation. The proper diagnosis and treatment of individuals exposed to radiation depend on methods used to detect the type and magnitude of radiation exposure, to decontaminate both the individuals and the environment (for example, animals, food, and water), and to monitor individual radiation exposure to identify individuals who will require blood and bone marrow products.


Pluripotential Stem Cell Fresh Freeze Plasma Radiation Injury Bone Marrow Stem Cell Recombinant Human Erythropoietin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Valeri, C. R. Blood Banking and the Use of Frozen Blood Products. Chemical Rubber Company, Boca Raton, Florida, 1976.Google Scholar
  2. 2.
    Park, B. H., Good, R. A., Gate, J., et al Fatal graft-vs-host reaction following transfusion of allogeneic blood and plasma in infants with combined immunodeficiency disease. Transplant Proc 6: 385–387, 1974.Google Scholar
  3. 3.
    Donahue, R. E., Wang, E. A., Stone, D. K., et al. Stimulation of haematopoiesis in primates by continuous infusion of recombinant human GM-CSF. Nature 321: 872–875, 1986.PubMedCrossRefGoogle Scholar
  4. 4.
    Eschbach, J. W., Egrie, J. C., Downing, M. R., et al. Correction of the anemia of end-stage renal disease with recombinant human erythropoietin. Results of a combined phase I and II clinical trial. N Engl J Med 316: 73–78, 1987.PubMedCrossRefGoogle Scholar
  5. 5.
    Mayer, P., Lam, C., Obenaus, H., et al. Recombinant human GM-CSF induces leukocytosis and activates peripheral blood polymorphonuclear neutrophils (PMNs) in non-human primates. Blood 70: 206–213, 1987.PubMedGoogle Scholar
  6. 6.
    Gillio, A. P., Bonilla, M. A., Potter, G. K., et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic reconstitution after autologous bone marrow transplantation in primates. Transplant Proc 19: 153–156, 1987.PubMedGoogle Scholar
  7. 7.
    Groopman, J. E., Mitsuyasu, R. T., DeLeo, M. J., et al. Effect of recombinant human granulocytee-macrophage colony-stimulating factor on myelopoiesis in the acquired immunodeficiency syndrome. N Eng! J Med 317: 593–598, 1987.CrossRefGoogle Scholar
  8. 8.
    Matsumoto, M., Matsubara, S., Matsuno, T., et al. Protective effect of human granulocyte colony-stimulating factor on microbial infection in neutropenic mice. Infect Immun 55: 2715–2720, 1987.PubMedGoogle Scholar
  9. 9.
    McDonald, T. P., Cottrell, M. B., Clift, R. E., et al. High doses of recombinant erythropoietin stimulate platelet production in mice. Exp Hematol 15: 719–721, 1987.PubMedGoogle Scholar
  10. 10.
    Monroy, R. L., Skelly, R. R., MacVittie, T. J., et al. The effect of recombinant GM-CSF on the recovery of monkeys transplanted with autologous bone marrow. Blood 70: 1696–1699, 1987.PubMedGoogle Scholar
  11. 11.
    Nienhuis, A. W., Donahue, R. E., Karlsson, S., et al Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF) shortens the period of neutropenia after autologous bone marrow transplantation in a primate model. J Clin Invest 80: 573–577, 1987.PubMedCrossRefGoogle Scholar
  12. 12.
    Antman, K. S., Griffin, J. D., Elias, A., et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on chemotherapy-induced myelosuppression. N Engl J Med 319: 593598, 1988.Google Scholar
  13. 13.
    Berridge, M. V., Fraser, J. K., Carter, J. M., et al. Effects of recombinant human erythropoietin on megakaryocytes and on platelet production in the rat. Blood 72: 970–977, 1988.PubMedGoogle Scholar
  14. 14.
    Brandt, S. J., Peters, W. P., Atwater, S. K., et al. Effect of recombinant human granulocyte-macrophage colony-stimulating factor on hematopoietic reconstitution after high-dose chemotherapy and autologous bone marrow transplantation. N Engl J Med 318: 869–876, 1988.PubMedCrossRefGoogle Scholar
  15. 15.
    Griffin, J. D. Clinical applications of colony-stimulating factors. Oncology 2: 15–21, 1988.PubMedGoogle Scholar
  16. 16.
    Monroy, R. L., Skelly, R. R., Taylor, P., et al. Recovery from severe hematopoietic suppression using recombinant human granulocyte-macrophage colony stimulating factor. Exp Hematol 16: 344–348, 1988.Google Scholar
  17. 17.
    Peters, W. P., Stuart, A., Affronti, M. L., et al. Neutrophil migration is defective during recombinant human granulocyte-macrophage colony-stimulating factor infusion after autologous bone marrow transplantation in humans. Blood 72: 1310–1315, 1988.PubMedGoogle Scholar
  18. 18.
    Valeri, C. R., Sims, K. L., Bates, J. F., et al. An integrated liquid-frozen blood banking system. Vox Sang 45: 25–39, 1983.CrossRefGoogle Scholar
  19. 19.
    Valeri, C. R. Cryobiology. In: Methods in Hematology: Blood Transfusion, Vol. 17. T. J. Greenwalt, Ed. Churchill Livingstone, Edinburgh, U.K., 1988, pp. 277–304.Google Scholar
  20. 20.
    Valeri, C. R., Pivacek, L. E., Gray, A. D., et al. The safety and therapeutic effectiveness of human red cells stored at -80°C for as long as 21 years. Transfusion 29: 429–437, 1989.PubMedCrossRefGoogle Scholar
  21. 21.
    Crowley, J. P., Skrabut, E. M., and Valeri, C. R. Immunocompetent lymphocytes in previously frozen washed red cells. Vox Sang 26: 513–517, 1974.CrossRefGoogle Scholar
  22. 22.
    Valeri, C. R. The current state of platelet and granulocyte cryopreservation. CRC Crit Rev Clin Lab Sci 14: 21–74, 1981.CrossRefGoogle Scholar
  23. 23.
    Schiffer, L. M., Atkins, H. L., Chanana, A. D., et al. Extracorporeal irradiation of the blood in humans: Effect upon erythrocyte survival. Blood 27: 831–843, 1966.PubMedGoogle Scholar
  24. 24.
    Greenberg, M. L., Chanana, A. D., Cronkite, E. P., et al. Extracorporeal irradiation of blood in man: Radiation resistance of circulating platelets. Radiat Res 35: 147–154, 1968.PubMedCrossRefGoogle Scholar
  25. 25.
    Button, L. N., DeWolf, W. C., Newburger, P. E., et al. The effects of irradiation on blood components. Transfusion 21: 419–426, 1981.PubMedCrossRefGoogle Scholar
  26. 26.
    Leitman, S. F., and Holland, P. V. Irradiation of blood products. Indications and guidelines. Transfusion 25: 293–300, 1985.Google Scholar
  27. 27.
    Moore, G. L., and Ledford, M. E. Effects of 4000 rad irradiation on the in vitro storage properties of packed red cells. Transfusion 25: 583–585, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Holland, P. V., and Schmidt, P. L., Eds. Standards for Blood Banks and Transfusion Services. 12th ed., American Association of Blood Banks, Arlington, Virginia, 1987.Google Scholar
  29. 29.
    Read, E. J., Kodis, C., Carter, C. S., et al. Viability of platelets following storage in the irradiated state: A pair-controlled study. Transfusion 28: 446–450, 1988.PubMedCrossRefGoogle Scholar
  30. 30.
    Rock, G., Adams, G. A., and Labow, R. S. The effects of irradiation on platelet function. Transfusion 28: 45 1455, 1988.Google Scholar
  31. 31.
    Valeri, C. R. Cryopreservation of human platelets and bone marrow and peripheral blood totipotential mononuclear stem cells. Ann NY Acad Sci 459: 353–366, 1986.CrossRefGoogle Scholar
  32. 32.
    Carciero, R., and Valeri, C. R. Isolation of mononuclear leukocytes in a plastic bag system using Ficoll-Hypaque. Vox Sang 49: 373–380, 1985.CrossRefGoogle Scholar
  33. 33.
    Krupp, K. R., Lowder, J. N., and Herzig, R. H. Bone marrow processing for transplantation. In: Methods in Hematology: Blood Transfusion, Vol. 17. T. J. Greenwalt, Ed. Churchill Livingstone, Edinburgh, U.K., 1988, pp. 257–276.Google Scholar
  34. 34.
    Valeri, C. R., Melaragno, A. J., Dittmer, J., et al. Bone Marrow Reconstitution of Lethally Irradiated Beagles by Treatment With Autologous Previously Frozen Bone Marrow or Peripheral Blood Mononuclear Cells Obtained as a Byproduct of Plateletpheresis. Naval Blood Research Laboratory/Boston University School of Medicine, Technical Report No. 85–01, Boston, MA, 1985.Google Scholar
  35. 35.
    Valeri, C. R., Ragno, G., Gray, A., Cryopreservation of Mononuclear Cells Isolated From the Peripheral Blood of Human Volunteers: Effects of the Cryoprotectant Solution (10% DMSOPlasma or 5% DMSO-6% HES-4% HSA), the Rate of Freezing (1°C/minute or 2–4°C/minute), and the Temperature of Storage in the Frozen State (-80°C or -150°C) for 3 Months on the In Vitro Recovery of Mononuclear Cells and Their Growth in the GEMM-CFU Tissue Culture Assay. Naval Blood Research Laboratory/Boston University School of Medicine, Technical Report No. 86–02, Boston, MA, 1986.Google Scholar
  36. 36.
    Horland, A., Ziegelstein, R., Carciero, R., et al. Comparison of Human and Baboon Marrow Mononuclear Cells in GEMM-CFU Tissue Culture System. Naval Blood Research Laboratory/ Boston University School of Medicine, Technical Report No. 85–04, Boston, MA, 1985.Google Scholar
  37. 37.
    Malinin, T. I., Pegg, D. E., Perry, V. P., et al. Long-term storage of bone marrow cells at liquid nitrogen and dry ice temperatures. Cryobiology 7: 65–69, 1970.PubMedCrossRefGoogle Scholar
  38. 38.
    O’Grady, L. F., and Lewis, J. P. The long-term preservation of bone marrow. Transfusion 12: 312–316, 1972.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • C. Robert Valeri
    • 1
  1. 1.Naval Blood Research LaboratoryBostonUSA

Personalised recommendations