Prevention of Infection With Endogenous Organisms

  • Gary P. Zaloga

Abstract

Infection is a major cause of organ failure and death in patients after radiation injury. Because most infections result from invasion by endogenous organisms from the gut and respiratory tract, in this chapter I discuss state-of-the-art methods for minimizing infections from these two sites.

Keywords

Free Amino Acid Enteral Nutrition Hemorrhagic Shock Enteral Feeding Bacterial Translocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sakata, T., and von Engelhardt, W. Stimulatory effect of short chain fatty acids on the epithelial cell proliferation in rat large intestine. Comp Biochem Physiol 74A: 459 (Abstract), 1983.Google Scholar
  2. 2.
    Rombeau, J. L., Rolandoelli, R. H., Kripke, S. A., et al. Experimental investigations of short-chain fatty acids as colonic fuels. In: The Gastrointestinal Response to Injury, Starvation, and Enteral Nutrition. 8th Ross Conference on Medical Research, Ross Laboratories, Columbus, Ohio, 1988, pp. 79–82.Google Scholar
  3. 3.
    Souba, W. W., Smith, R. J., and Wilmore, D. W. Glutamine metabolism by the intestinal tract. JPEN 9: 608–617, 1985.CrossRefGoogle Scholar
  4. 4.
    Hwang, T. L., O’Dwyer, S. T., Smith, R. J., et al. Preservation of small bowel mucosa using glutamine-enriched parenteral nutrition. Surg Forum 37: 56–58, 1986.Google Scholar
  5. 5.
    Klimberg, V. S., Souba, W. W., Dolson, D., et al. Oral glutamine supports crypt cell turnover and accelerates intestinal healing following abdominal radiation. JPEN 13: 11S (Abstract), 1989.Google Scholar
  6. 6.
    Fox, A. D., Kripke, S. A., DePaula, J., et al. Effect of a glutamine-supplemented enteral diet on methotrexate-induced enterocolitis. JPEN 12: 325–331, 1988.CrossRefGoogle Scholar
  7. 7.
    Dufour, C., Dandrifosse, G., Forget, P., et al. Spermine and spermidine induce intestinal maturation in the rat. Gastroenterology 95: 112 (Abstract), 1988.Google Scholar
  8. 8.
    Kudsk, K. A., Carpenter, G., Peterson, S. R., et al. Effect of enteral and parenteral feeding in malnourished rats with hemoglobin-E. coil adjuvant peritonitis. J Surg Res 31: 105–110, 1981.PubMedCrossRefGoogle Scholar
  9. 9.
    Kudsk, K. A., Stone, J. M., Carpenter, G., et al. Enteral and parenteral feeding influences mortality after hemoglobin E. coil peritonitis in normal rats. J Trauma 23: 605–609, 1983.Google Scholar
  10. 10.
    Peterson, S. R., Kudsk, K. A., Carpenter, G., et al. Malnutrition and immunocompetence: Increased mortality following an infectious challenge during hyperalimentation. J Trauma 21: 528–533, 1981.CrossRefGoogle Scholar
  11. 11.
    Rothman, D., Latham, M. C., and Walker, W. A. Transport of macromolecules in malnourished animals. I. Evidence of increased uptake of intestinal antigens. Nutr Rev 2: 467–473, 1982.Google Scholar
  12. 12.
    Berg, R. D. Bacterial translocation from the gastrointestinal tracts of mice receiving immunosuppressive chemotherapeutic agents. Curr Microbiol 8: 285–292, 1983.CrossRefGoogle Scholar
  13. 13.
    Owens, W. E., and Berg, R. D. Bacterial translocation from the gastrointestinal tract of athymic (nu/nu) mice. Infect Immun 27: 461–467, 1980.PubMedGoogle Scholar
  14. 14.
    Morehouse, J. L., Specian, R. D., Stewart, J. J., et al. Translocation of indigenous bacteria from the gastrointestinal tract of mice after oral ricinoleic acid treatment. Gastroenterology 91: 673–682, 1986.PubMedGoogle Scholar
  15. 15.
    Brook, I., MacVittie, T. J., and Walker, R. I. Recovery of aerobic and anaerobic bacteria from irradiated mice. Infect Immun 46: 270–271, 1984.PubMedGoogle Scholar
  16. 16.
    Koziol, J., Rush, B. F., Smith, S. M., et al. Occurrence of bacteremia during and after hemorrhagic shock. J Trauma 28: 10–16, 1988.PubMedCrossRefGoogle Scholar
  17. 17.
    Baker, J. W., Deitch, E. A., Berg, R. D., et al. Hemorrhagic shock induces bacterial translocation from the gut. J Trauma 28: 896–906, 1988.PubMedCrossRefGoogle Scholar
  18. 18.
    Sori, A. J., Rush, B. F., Lysz, T. W., et al. The gut as a source of sepsis after hemorrhagic shock. Am J Surg 155: 187–192, 1988.PubMedCrossRefGoogle Scholar
  19. 19.
    Heneghan, J. B., Peuler, M., Costrini, A., et al. Hemorrhagic shock in cecectomized germfree rats. Surg Forum 21: 232–233, 1970.PubMedGoogle Scholar
  20. 20.
    Prielipp, R. C., Ward, K. A., and Zaloga, G. P. Peptide-based enteral nutrition prevents liver injury during severe hemorrhagic shock in rats. Anesthesiology 71: 164 (Abstract), 1989.Google Scholar
  21. 21.
    Deitch, E. A., and Bridges, R. M. Effect of stress and trauma on bacterial translocation from the gut. J Surg Res 42: 536–542, 1987.PubMedCrossRefGoogle Scholar
  22. 22.
    Maejima, K., Deitch, E., and Berg, R. Promotion by burn stress of the translocation of bacteria from the gastrointestinal tracts of mice. Arch Surg 119: 166–172, 1984.PubMedCrossRefGoogle Scholar
  23. 23.
    Howerton, E. E., and Kolmen, S. N. The intestinal tract as a portal of entry of Pseudomonas in burned rats. J Trauma 12: 335–340, 1972.PubMedCrossRefGoogle Scholar
  24. 24.
    Deitch, E. A., Winterton, J., and Berg, R. Thermal injury promotes bacterial translocation from the gastrointestinal tract in mice with impaired T-cell-mediated immunity. Arch Surg 121: 97101, 1986.CrossRefGoogle Scholar
  25. 25.
    Alexander, J. W. Influence of feeding route on metabolic response to injury. In: The Gastrointestinal Response to Injury, Starvation, and Enteral Nutrition. 8th Ross Conference on Medical Research, Ross Laboratories, Columbus, Ohio, 1988, pp. 41–42.Google Scholar
  26. 26.
    Inoue, S., Wirman, J. A., Alexander, J. W., et al. Candida albicans translocation across the gut mucosa following burn injury. J Surg Res 44: 479–492, 1988.PubMedCrossRefGoogle Scholar
  27. 27.
    Owens, W. E., and Berg, R. D. Bacterial translocation from the gastrointestinal tracts of thymectomized mice. Curr Microbio17: 169–174, 1982.Google Scholar
  28. 28.
    Walker, R. I., Ledney, G. D., and Galley, C. B. Aseptic endotoxemia in radiation injury and graft-versus-host disease. Radiat Res 62: 242–249, 1975.PubMedCrossRefGoogle Scholar
  29. 29.
    Bounous, G., Hugon, J., and Gentile, J. M. Elemental diet in the management of the intestinal lesion produced by 5-fluorouracil in the rat. Can J Surg 14: 298–311, 1971.PubMedGoogle Scholar
  30. 30.
    Bounous, G., Gentile, J. M., and Hugon, J. Elemental diet in the management of the intestinal lesion produced by 5-fluorouracil in man. Can J Surg 14: 312–324, 1971.PubMedGoogle Scholar
  31. 31.
    Stone, H. H., Kolb, L. D., Currie, C. A., et al. Candida sepsis: Pathogenesis and principles of treatment. Ann Surg 179: 697–711, 1974.PubMedCrossRefGoogle Scholar
  32. 32.
    Fry, D. E., Flamer, T. W., Garrison, R. N., et al. Atypical clostridial bacteremia. Surg Gynecol Obstet 153: 28–30, 1981.PubMedGoogle Scholar
  33. 33.
    Garrison, R. N., Fry, D. E., Berborich, S., et al. Enterococcal bacteremia: Clinical implications and determinants of death. Ann Surg 196: 43–47, 1982.PubMedCrossRefGoogle Scholar
  34. 34. Renk, C. M., Owens, D. R., Birkhahn, R. H., et al. Effect of intravenous or oral feeding on immunocompetence in traumatized rats. JPEN 4:587 (Abstract), 1985. Google Scholar
  35. 35.
    Birkhahn, R. H., and Renk, C. M. Immune response and leucine oxidation in oral and intravenous fed rats. Am J Clin Nutr 39: 45–53, 1984.PubMedGoogle Scholar
  36. 36.
    Alverdy, J. C., Chi, H. S., and Sheldon, G. F. The effect of parenteral nutrition on gastrointestinal immunity: The importance of enteral stimulation. Ann Surg 202: 681–684, 1985.PubMedCrossRefGoogle Scholar
  37. 37.
    Alverdy, J. C., Aoys, E., and Moss, G. S. Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 104: 185–190, 1988.PubMedGoogle Scholar
  38. 38.
    Border, J., Hassett, J., LaDuca, J., et al. The gut origin septic states in blunt multiple trauma (ISS 40) in the ICU. Ann Surg 206: 427–448, 1987.PubMedCrossRefGoogle Scholar
  39. 39.
    Alexander, J. W., Macmillan, B. G., Stinnet, J. D., et al. Beneficial effects of aggressive protein feeding in severely burned children. Ann Surg 192: 505–517, 1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Antonacci, A., Cowles, S., and Reaves, L. The role of nutrition in immunologic function. Infect Surg 3: 590–602, 1984.Google Scholar
  41. 41.
    Moore, E. E. Early postinjury enteral feeding: Attenuated stress response and reduced sepsis. Contemp Surgery 32: 1–40, 1988.Google Scholar
  42. 42.
    Peterson, V. M., Moore, E. E., Jones, T. N., et al. Total enteral nutrition versus total parenteral nutrition after major torso injury: Attenuation of hepatic protein reprioritization. Surgery 104: 199–207, 1988.PubMedGoogle Scholar
  43. 43.
    Mochizuki, H., Trocki, O., Dominioni, L., et al. Mechanism of prevention of postburn hypermetabolism and catabolism by early enteral feeding. Ann Surg 200: 297–310, 1984.PubMedCrossRefGoogle Scholar
  44. 44.
    Dominioni, L., Trocki, O., Mochizuki, H., et al. Prevention of severe postburn hypermetabolism and catabolism by immediate intragastric feeding. J Burn Care Rehabi! 5: 106–112, 1984.CrossRefGoogle Scholar
  45. 45.
    Jenkins, M., Gottschlich, M., Alexander, J. W., et al. Effect of immediate enteral feeding on the hypermetabolic response following severe burn injury. JPEN 13(Suppl 1 ): 12S (Abstract), 1989.Google Scholar
  46. 46.
    Moore, E. E., and Jones, T. N. Benefits of immediate jejunostomy feeding after major abdominal trauma: A prospective, randomized study. J Trauma 26: 874–880, 1986.PubMedCrossRefGoogle Scholar
  47. 47.
    Pinilla, J. C., Oleniuk, F. H., Reed, D., et al. Does antacid prophylaxis prevent upper gastrointestinal bleeding in critically ill patients? Crit Care Med 13: 646–650, 1985.PubMedCrossRefGoogle Scholar
  48. 48.
    Cheadle, W. G., Vitale, G. C., Mackie, C. R., et al. Prophylactic postoperative nasogastric decompression. A prospective study of its requirement and the influence of cimetidine in 200 patients. Ann Surg 202: 361–367, 1985.PubMedCrossRefGoogle Scholar
  49. 49.
    DuMoulin, G. C., Paterson, D. G., Hedley-White, J., et al. Aspiration of gastric bacteria in antacid-treated patients: A frequent cause of postoperative colonisation of the airway. Lancet 1:242–245, 1982.Google Scholar
  50. 50.
    Hillman, K. M., Riordan, T., O’Farrell, S. M., et al. Colonization of the gastric content in critically ill patients. Crit Care Med 10: 444–448, 1982.PubMedCrossRefGoogle Scholar
  51. 51.
    Kahn, R. J., Brimioulle, S., and Vincent, J. L. Influence of antacid treatment on the tracheal flora in mechanically ventilated patients. Crit Care Med 10: 229 (Abstract), 1982.Google Scholar
  52. 52.
    Driks, M. R., Craven, D. E., Celli, B. R., et al. Nosocomial pneumonia in intubated patients randomized to sucralfate versus antacids and/or histamine type 2 blockers: The role of gastric colonization. N Engl J Med 317: 1376–1382, 1987.PubMedCrossRefGoogle Scholar
  53. 53.
    Goularte, T. A., Lichtenberg, D. A., and Craven, D. E. Gastric colonization in patients receiving antacids and mechanical ventilation: A mechanism for pharyngeal colonization. Am J Infect Control 14: 88 (Abstract), 1986.Google Scholar
  54. 54.
    Garvey, B. M., McCambley, J. A., and Tuxen, D. V. Effects of gastric alkalinization on bacterial colonization in critically ill patients. Crit Care Med 17: 211–216, 1989.PubMedCrossRefGoogle Scholar
  55. 55.
    Kappstein, I., Vogel, W., Krieg, N., et al. The influence of exogenous and endogenous factors on the incidence of aspiration pneumonia. In: Prevention of Stress Bleeding in Critically III Patients: A New Concept. M. Tryba, Ed. Thieme, New York, 1988, pp. 105–122.Google Scholar
  56. 56.
    Tryba, M. Pulmonary complications during the prevention of stress bleeding with drugs. In: Prevention of Stress Bleeding in Critically Ill Patients: A New Concept. M. Tryba, Ed. Thieme, New York, 1988, pp. 128–135.Google Scholar
  57. 57.
    Tryba, M. Prevention of stress bleeding with ranitidine or pirenzepine and the risk of pneumonia. J Clin Anesth 1: 12–20, 1988.PubMedCrossRefGoogle Scholar
  58. 58.
    Craven, D. E., Kunchis, L. M., Kilinsky, V., et al. Risk factors for pneumonia and fatality in patients receiving continuous mechanical ventilation. Am Rev Respir Dis 133: 792–796, 1986.PubMedGoogle Scholar
  59. 59.
    Atherton, S. T., and White, D. J. Stomach as source of bacteria colonising respiratory tract during artificial ventilation. Lancet 11: 968–969, 1978.CrossRefGoogle Scholar
  60. 60.
    Johanson, W. G., Pierce, A. K., Sanford, J., et al. Nosocomial respiratory infections with gram negative bacilli: The significance of colonization of the respiratory tract. Ann Intern Med 77: 701–706, 1972.PubMedCrossRefGoogle Scholar
  61. 61.
    Tryba, M. The risk of acute stress bleeding and nosocomial pneumonia in ventilated ICU-patients: Sucralfate versus antacids. Am J Med 83 (3B): 117–124, 1987.PubMedCrossRefGoogle Scholar
  62. 62.
    Cannon, L. A., Heiselman, D., Gardner, W., et al. Prophylaxis of upper gastrointestinal tract bleeding in mechanically ventilated patients: A randomized study comparing the efficacy of sucralfate, cimetidine, and antacids. Arch Intern Med 147: 2101–2106, 1987.PubMedCrossRefGoogle Scholar
  63. 63.
    Tryba, M., and Rether, J. Sucralfate versus antacids for the prevention of acute stress bleeding in risk patients receiving respiratory assistance. In: Prevention of Stress Bleeding in Critically Ill Patients: A New Concept. M. Tryba, Ed. Thieme, New York, 1988, pp. 42–49.Google Scholar
  64. 64.
    Laggner, A. N., Lenz, K., Stanek, G., et al. Bacterial colonization of the gastric juice of intensive care patients receiving stress ulcer prophylaxis: Sucralfate versus ranitidine. In: Prevention of Stress Bleeding in Critically Ill Patients: A New Concept. M. Tryba, Ed. Thieme, New York, 1988, pp. 123–127.Google Scholar
  65. 65.
    Silk, D. B. A., Fairclough, P. D., Clark, M. L., et al. Use of a peptide rather than free amino acid nitrogen source in chemically defined “elemental” diets. JPEN 4: 548–553, 1980.CrossRefGoogle Scholar
  66. 66.
    Brinson, R. R. Enteral nutrition in the critically ill patient: The role of hypoalbuminemia. In: The Gastrointestinal Response to Injury, Starvation, and Enteral Nutrition. 8th Ross Conference on Medical Research, Ross Laboratories, Columbus, Ohio, 1988, pp. 59–61.Google Scholar
  67. 67.
    Keohane, D. P., Grimble, G. K., Brown, B., et al. Influence of protein composition and hydrolysis method on intestinal absorption in man. Gut 26: 907–913, 1985.PubMedCrossRefGoogle Scholar
  68. 68.
    McArdle, A. H., and Bounous, G. Enteroprotection by elemental diets: Role of enteral feeding as prophylaxis against radiation injury. In: The Gastrointestinal Response to Injury, Starvation, and Enteral Nutrition. 8th Ross Conference on Medical Research, Ross Laboratories, Columbus, Ohio, 1988, pp. 68–70.Google Scholar
  69. 69.
    Hugon, J., and Bounous, G. Elemental diet in the management of the intestinal lesions produced by radiation in the mouse. Can J Surg 15: 18–26, 1972.Google Scholar
  70. 70.
    Beer, W. H., Fan, A., and Halsted, C. H. Clinical and nutritional implication of radiation enteritis. Am J Clin Nutr 41: 85–91, 1985.PubMedGoogle Scholar
  71. 71.
    Meredith, J. W., Ditesheim, J. A., and Zaloga, G. P. Visceral protein synthesis is greater with peptide-diet versus intact-protein diet in trauma patients. J Trauma, 29: 1033 (Abstract), 1989.Google Scholar
  72. 72.
    Brinson, R. R., and Pitts, W. M. Enteral nutrition in the critically ill patient: Role of hypoalbuminemia. Crit Care Med 17: 367–370, 1989.Google Scholar
  73. 73.
    Brinson, R. R., and Kolts, B. E. Diarrhea associated with severe hypoalbuminemia: A comparison of a peptide-based chemically defined diet and a standard enteral alimentation. Crit Care Med 16: 130–136, 1988.PubMedCrossRefGoogle Scholar
  74. 74.
    Poullain, M. G., Broyart, J. P., Roger, L., et al. Effect of whey proteins and their constitutive peptides or amino acids mixture on growth steatorrhea and nitrogen balance after acute starvation in the rat. JPEN 11:235 (Abstract), 1987.Google Scholar
  75. 75.
    Rerat, A., Nunes, C. S., Mendy, F., et al. Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymic hydrolysate or of free amino acids. Br J Nutr 60: 121–136, 1988.PubMedCrossRefGoogle Scholar
  76. 76.
    Attebery, H. R., Sutter, V. L., and Finegold, S. M. Effect of a partially chemically defined diet on normal human fecal flora. Am J Clin Nutr 25: 1391–1398, 1972.PubMedGoogle Scholar
  77. 77.
    Wilkins, T. D., and Long, W. R. Changes in the flora of the cecal mucosa of mice fed a chemically defined diet. Bacteriol Proc 71: 113 (Abstract), 1971.Google Scholar
  78. 78.
    Bounous, G., LeBel, E., Schuster, J., et al. Dietary protection during radiation therapy. Strahlenther Onkol 149: 476–483, 1975.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Gary P. Zaloga
    • 1
  1. 1.Department of Anesthesia (Critical Care) and Medicine, Bowman Gray School of MedicineWake Forest UniversityWinston-SalemUSA

Personalised recommendations