Medical Assessment and Therapy in Bone Marrow Failure Due to Radiation Accidents

Role of Bone Marrow Transplantation and Hematopoietic Growth Factors
  • Richard Champlin


With the increasing use of nuclear energy, it is important that physicians be aware of the principles of managing victims of radiation injuries. This chapter focuses on management of total-body radiation exposure.


Bone Marrow Transplantation Radiation Injury Bone Marrow Failure Nuclear Accident Hematopoietic Growth Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. U.S.S.R. State Committee on the Utilization of Atomic Energy. The Accident at Chernobyl Nuclear Power Plant and Its Consequences. Presented at the International Atomic Energy Agency Experts Meeting, August 25–29,1986.Google Scholar
  2. 2.
    U.S. Nuclear Regulatory Commission. Report on the Accident at the Chernobyl Nuclear Power Station. NUREG-1250. Washington, DC, 1986.Google Scholar
  3. 3.
    Anspaugh, L. R., Catlin, R. J., and Goldman, M. The global impact of the Chernobyl reactor accident. Science 242: 1513–1519, 1988.PubMedCrossRefGoogle Scholar
  4. 4.
    Proceedings of the 35th Session of United Nations Scientific Committee on the Effects of Atomic Radiation. Early Effects in Man of High Dose Radiation. Report to the United Nations, 1985.Google Scholar
  5. 5.
    Champlin, R. E., Gale, R. P., and Kastenberg, W. Radiation accidents and nuclear energy: Medical consequences and therapy. Ann Intern Med 109: 730–734, 1988.PubMedCrossRefGoogle Scholar
  6. 6.
    Fliedner, T. M., Nothdurft, W., and Steinbach, K. H. Blood cell changes after radiation exposure as an indicator for hemopoietic stem cell function. Bone Marrow Transplant 3: 77–84, 1988.Google Scholar
  7. 7.
    Bond, V. P., and Cronkite, E. P. Workshop on short-term health effects of reactor accidents: Chernobyl. Report BNL 52030. U.S. Department of Energy, Washington, DC, 1986.Google Scholar
  8. 8.
    Wald, N. Hematological parameters after acute radiation injury. In: Manual on Radiation Hematology. International Atomic Energy Agency, Vienna, 1971, pp. 253–264.Google Scholar
  9. 9.
    Wilson, S. G. Radiation-induced gastrointestinal death in the monkey. Am J Pathol 35: 1233 1251, 1959.Google Scholar
  10. 10.
    Mole, R. H. Quantitative aspects of the lethal action of whole-body irradiation in the human species: Brief and protracted exposure and the applicability of information from other mammalian species. Int J Radiat Biol 46: 212–213, 1984.Google Scholar
  11. 11.
    Van Dyk, J., Keane, T. J., Kan, S., et al. Radiation pneumonitis following large single dose irradiation: A re-evaluation based on absolute dose to lung. Int J Radiat Oncol Biol Phys 7: 461–467, 1981.Google Scholar
  12. 12.
    Fanger, H., and Lushbaugh, C. C. Radiation death from cardiovascular shock following a criticality accident: Report of a second death from a newly defined human radiation death syndrome. Arch Pathol Lab Med 83: 446–460, 1967.Google Scholar
  13. Jammet, H., Daburon, F., Gerber, G. B., et al., Eds. Radiation damage to the skin. Br J Radiol 19(Suppl), 1986.Google Scholar
  14. 14.
    Brooks, J. W., Evans, E. I., Han, W. T., et al. The influence of external body radiation on mortality from thermal burns. Ann Surg 136: 533–545, 1952.PubMedGoogle Scholar
  15. 15.
    Shleien, B. Preparedness and Response in Radiation Accidents. U.S. Department of Health and Human Services. FDA-HHS No. 83–8211, 1983, pp. 180–195.Google Scholar
  16. 16.
    Saenger, E. L. Radiation accidents. Ann Emerg Med 15 (9): 1061–1066, 1986.PubMedCrossRefGoogle Scholar
  17. 17.
    Andrews, G. A. Medical management of accidental total-body irradiation. In: The Medical Basis for Radiation Accident Preparedness. K. F Hubner and S. A. Fry, Eds. Elsevier North Holland, Inc., New York, 1980, pp. 297–310.Google Scholar
  18. 18.
    Voelz, G. L. Current approaches to the management of internally contaminated persons. In: The Medical Basis for Radiation Accident Preparedness. K. F. Hubner and S. A. Fry, Eds. Elsevier North Holland, Inc., New York, 1980, pp. 311–326.Google Scholar
  19. 19.
    Wald, N. Diagnosis and therapy of radiation injuries. Bull NY Acad Med 59: 1129–1138, 1983.Google Scholar
  20. 20. Biological Dosimetry: Chromosomal Aberration Analysis for Dose Assessment. Technical Report 260. International Atomic Energy Agency, Vienna, 1986.Google Scholar
  21. 21.
    Bodey, G. P., Buckley, M., Sathe, Y. S., et al. Quantitative relationship between circulating leukocytes and infections in patients with acute leukemia. Ann Intern Med 64: 328–340, 1966.PubMedCrossRefGoogle Scholar
  22. 22.
    Monroy, R. L., Vriesendorp, H. M., and MacVittie, T. J. Improved survival of dogs exposed to fission neutron irradiation and transplanted with DLA identical bone marrow. Bone Marrow Transplant 2: 375–384, 1987.Google Scholar
  23. 23.
    Thomas, E. D., Storb, R., Clift, R. A., et al. Bone marrow transplantation. N Eng! J Med 292: 895902, 1975.Google Scholar
  24. 24.
    Thomas, E. D., LeBond, R., Graham, T., et al. Marrow infusions in dogs given sublethal irradiation. Radiat Res 41: 113–124, 1970.PubMedCrossRefGoogle Scholar
  25. 25.
    Storb, R., Weiden, P. L., Schroeder, M. L., et al. Marrow grafts between canine littermates homozygous or heterozygous for lymphocyte defined histocompatibility antigens. Transplantation 21: 299–306, 1976.PubMedCrossRefGoogle Scholar
  26. 26.
    Champlin, R. E., and Gale, R. P. Early complications of bone marrow transplantation. Semin Hematol 21: 101–108, 1984.Google Scholar
  27. 27.
    Beatty, P. G., Clift, R. A., Michelson, E. M., et al. Marrow transplantation from related donors other than HLA-identical siblings. N Engl J Med 313: 765–771, 1985.PubMedCrossRefGoogle Scholar
  28. 28.
    Anasetti, C., Amos, D., Beatty, P. G., et al. Effect of HLA compatibility on engraftment of bone marrow transplants in patients with leukemia or lymphoma. N Engl J Med 320: 197204, 1989.Google Scholar
  29. 29.
    Champlin, R. E. Role of bone marrow transplantation for nuclear accidents: Implications of the Chernobyl disaster. Semin Hemato124(Suppl 2 ): 1–4, 1987.Google Scholar
  30. 30.
    Tretin, J. J. Grafted-marrow-rejection mortality contrasted to homologous disease in irradiated mice receiving homologous bone marrow.)NCI 22: 219–228, 1959.Google Scholar
  31. 31.
    Ferrera, J., Lipton, J., Hellman, S., et al. Engraftment following T-cell depleted marrow transplantation. Transplantation 43: 461–467, 1987.CrossRefGoogle Scholar
  32. 32.
    Lapidot, T., Singer, T. S., and Reisner, Y. Transient engraftment of T-cell depleted allogeneic bone marrow improves survival rate following lethal irradiation. Bone Marrow Transplant 3: 157164, 1988.Google Scholar
  33. 33.
    Baranov, A., Gale, R. P., Guskova, A., et al. Bone marrow transplantation following the Chernobyl nuclear accident. N Eng J Med 321: 205–212, 1989.CrossRefGoogle Scholar
  34. 34.
    Mathe, G., Jammet, H., Pendic, B., et al. Transfusions and homologous bone marrow transplantations in humans accidentally exposed to high doses of radiation. (Transfusions et greffes de moelle ossuese homologue chez des humains irradies a haute dose accidentellement). Rev Fr Etud Clin Biot 4: 226–238, 1959.Google Scholar
  35. 35.
    Gilberti, M. V. The 1967 radiation accident near Pittsburg, Pennsylvania, and a follow-up report. In: The Medical Basis for Radiation Accident Preparedness. K. F. Hubner and S. A. Fry, Eds. Elsevier North Holland, Inc., New York, 1980, pp. 131–140.Google Scholar
  36. 36.
    Butturini, A., Seeger, R., and Gale, R. P. Recipient immune competent T-lymphocytes can survive intensive conditioning for bone marrow transplantation. Blood 68: 954–956, 1986.PubMedGoogle Scholar
  37. 37.
    Reisner, Y., Ben-Bassat, B., Douer, D., et al. Demonstration of clonable alloreactive host T cells in a primate model for bone marrow transplantation. Proc Natl Acad Sci USA 83: 40124015, 1986.Google Scholar
  38. 38.
    Clark, S. C., and Kamen, R. The human hematopoietic colony-stimulating factors. Science 236: 1229–1237, 1987.PubMedCrossRefGoogle Scholar
  39. 39.
    Souza, L. M., Boone, T. C., Gabrilove, J., et al. Recombinant human granulocyte-colony stimulating factor: Effects on normal and leukemic myeloid cells. Science 232: 61–65, 1986.PubMedCrossRefGoogle Scholar
  40. 40.
    Metcalf, D. The granulocyte-macrophage colony-stimulating factors. Science 229: 16–22, 1985.PubMedCrossRefGoogle Scholar
  41. 41.
    Gabrilove, J. L., Jakubowski, A., Scher, H., et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional cell carcinoma of the urothelium. N Eng! J Med 318: 1414–1422, 1988.CrossRefGoogle Scholar
  42. 42.
    Champlin, R., Nimer, S. D., Ireland, P., et al. Treatment of refractory aplastic anemia with recombinant human granulocyte-macrophage colony-stimulating factor. Blood 73: 694–699, 1989.PubMedGoogle Scholar
  43. 43.
    Yang, Y. C., Ciarletta, A. B., Temple, P. A., et al. Human IL-3 (multi-CSF): Identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47: 310, 1986.CrossRefGoogle Scholar
  44. 44.
    Butturini, A., DeSouza, P. C., Gale, R. P., et al. Use of recombinant granulocyte-macrophage colony stimulating factor in the Brazil radiation accident. Lancet 11: 471–475, 1988.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Richard Champlin
    • 1
  1. 1.Division of Hematology/Oncology, Department of Medicine, Jonsson Comprehensive Cancer Center, School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations