Advertisement

Sensory Neocortex in Dolphin Brain

  • Peter J. Morgane
  • Ilya I. Glezer
Part of the NATO ASI Series book series (NSSA, volume 196)

Abstract

The fundamental plan and organization of the neocortex is the result of a slow evolutionary process which appears to have evolved through different transformations to eventually become the most intricate part of the nervous system. Its origins appear to have been at the reptile to mammal transition stage in the Triassic period of the Mesozoic era and continued for approximately 100 million years to reach a final prototype in the basal Insectivora in the late Cretaceous period of the Mesozoic era. Studies by Filimonoff (1949) showed that the great growth of the neocortex, and the complications of its structure as a whole, represent the principal characteristics of the evolution of the cerebrum in the course of phylogeny. In addition to the increase in the surface area of the neocortex, it also shows a qualitative progression and enrichment with differentiation of more specialized cellular elements. In this connection, the evolution of the cerebral cortex corresponds to a development and improvement of the sense organs, while the sequence of appearance of the cortical regions corresponds to the consecutive differentiation of these organs.

Keywords

Pyramidal Cell Growth Ring Cortical Evolution Late Cretaceous Period Neocortical Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amunts, V. V., Bogolepova, I. N. and Kesarev, V. S., 1977, Structural characteristics of the reticular formation of the brainstem, hippocampus and limbic region of the cortex, Zhurnal Neuropathologii Psikhiatrii S. S. Korsokova, 77: 1766–1770.Google Scholar
  2. Brodmann, K., 1909, “Vergleichende Lokalizationslehre der Grosshirnrinde”, Johann Ambrosius Barth, Leipzig.Google Scholar
  3. Burikova, N. V. and Krasnoshchekova, E. I., 1983, Cytoarchi-tectonics of the auditory cortex of the brain of animals with agranular type of neocortex, Vestn. Leningr. Univ. 9: 64–70.Google Scholar
  4. Diamond, I. T., 1967, The sensory neocortex, in: “Contributions to Sensory Physiology”, Vol. 2, W. D. Neff, ed., Academic Press, New York, 51–100.Google Scholar
  5. Domesick, V., 1969, Projections from the cingulate cortex in the rat, Brain Res., 12: 296–320.PubMedCrossRefGoogle Scholar
  6. Ebner, F. F., 1969, A comparison of primitive forebrain organization in metatherian and eutherian mammals, Ann. N. Y. Acad. Sci., 167: 241–257.CrossRefGoogle Scholar
  7. Ferrer, I. and Perera, M., 1988, Structure and nerve cell organization in the cerebral cortex of the dolphin Stenella coeruleoalba. A Golgi study, Anat. Embryol., 178: 161–173.PubMedCrossRefGoogle Scholar
  8. Filimonoff, I. N., 1949, “Comparative Anatomy of the Cerebral Cortex of Mammals. Paleocortex, Archicortex, and Intermediate Cortex”, Publication Academy Medical Sciences, Moscow.Google Scholar
  9. Garey, L. J. and Revishchin, A. V., 1990, Structure and thalamocortical relations of the cetacean sensory cortex: histological, tracer and immunocytochemical studies, in: “Sensory Abilities of Cetaceans: Laboratory and Field Evidence”, J. A. Thomas and R. A. Kastelein, eds., Plenum Press, New York.Google Scholar
  10. Glezer, I. I., Jacobs, M. S. and Morgane, P. J., 1988, Implications of the “initial brain” concept for brain evolution in Cetacea, Behavioral and Brain Sciences, 11: 75–116.CrossRefGoogle Scholar
  11. Glezer, I. I. and Morgane, P. J., 1990, Ultrastructure of synapses and Golgi analysis of neurons in the neocortex of the lateral gyrus (visual cortex) of the dolphin and pilot whale, Brain Res. Bulletin, 24: 401–427.CrossRefGoogle Scholar
  12. Gould, H. J. and Ebner, F. F., 1978, Interlaminar connections of the visual cortex in the hedgehog (Parae-chinus hypomelas). J. Comp. Neurol., 177: 503–518.PubMedCrossRefGoogle Scholar
  13. Gould, H. J., Hall, W. C. and Ebner, F. F., 1978, Connections of the visual cortex in the hedgehog (Parae-chinus hypomelas). J. Comp. Neurol., 177: 445–472.PubMedCrossRefGoogle Scholar
  14. Herrick, C. J., 1948, “The Brain of the Tiger Salamander”, Univ. of Chicago Press, Chicago.Google Scholar
  15. Jolicoeur, P., Pirlot, P., Baron, G. and Stephan, H., 1984, Brain structure and correlation patterns in Insecti-vora, Chiroptera and Primates, Syst. Zool., 33, 14–29.CrossRefGoogle Scholar
  16. Kaas, J. H., 1987, The organization and evolution of neocortex, in: “Higher Brain Functions: Recent Explorations of Brains Emergent Properties”, S. P. Wise, ed. Wiley, New York, 347–371.Google Scholar
  17. Kesarev, V. S., 1969, Structural organization of the limbic cortex in dolphins, Arkhiv Anat. Gistol. Embriol., 56: 28–35.Google Scholar
  18. Kesarev, V. S., 1970, Certain data on neuronal organization of the neocortex in the dolphin brain, Arkhiv Anat. Gistol. Embriol., 59: 71–77.Google Scholar
  19. Kesarev, V. S., Malofeyeva, L. I. and Trykova, O. V., 1977a, Ecological specificity of cetacean neocortex, J. Hirnforsch., 18: 447–460.PubMedGoogle Scholar
  20. Kesarev, V. S., Malofeyeva, L. I. and Trykova, O. V., 1977b, Structural organization of the cerebral neocortex in cetaceans, Arkhiv Anat. Gistol. Embriol., 73: 23–30.Google Scholar
  21. Krasnoshchekova, E. I., 1978, Histologic study of the cortex of the temporal region of the dolphin brain (Phocoena phocoena). Nerv. Sist., 18: 31–38.PubMedGoogle Scholar
  22. Krasnoshchekova, E. I. and Figurina, I. I., 1980, The cortical projection of the medial geniculate body of the dolphin brain, Arkhiv Anat. Gistol. Embriol., 78: 19–24.Google Scholar
  23. Ladygina, T. F., Mass, A. M. and Supin, A. Ya., 1978, Multiple sensory projections in the dolphin cerebral cortex, Zh. Vvssh. Nerv. Deiat., 18: 1047–1054.Google Scholar
  24. Leontovich, T. A. and Zhukova, G. P., 1963, The specificity of the neuronal structure and topography of the reticular formation in the brain and spinal cord of Carnivora, J. Comp. Neurol., 121: 347–381.PubMedCrossRefGoogle Scholar
  25. Lorente De No, R., 1938, Architecture and structure of the cerebral cortex, in: “Physiology of the Nervous System”, J. F. Fulton, ed., Oxford University Press, Oxford, 291–330.Google Scholar
  26. Mazurskaya, P. Z., Davydova, T. V. and Smirnov, G. D., 1966, Functional organization of exteroceptive projections in the forebrain of the turtle, Fizioloqicheskii Zhurnal SSSR imeni I. M. Sechenova, 52: 1050–1059.Google Scholar
  27. Morgane, P. J., Jacobs, M. S., and Galaburda, A., 1985, Conservative features of neocortical evolution in dolphin brain, Brain, Behavior and Evolution, 21: 176–184.CrossRefGoogle Scholar
  28. Morgane, P. J., Jacobs, M. S. and Galaburda, A., 1986a, Evolutionary morphology of the dolphin brain, in: “Dolphin Cognition and Behavior. A Comparative Approach”, R. J. Schusterman, J. A. Thomas and F. G. Wood, eds., Lawrence Erlbaum Associates, Hillsdale, 5–29.Google Scholar
  29. Morgane, P. J., Jacobs, M. S. and Galaburda, A., 1986b, Evolutionary aspects of cortical organization in the dolphin brain, in: “Research on Dolphins”, R. J. Harrison and M. Bryden, eds., Oxford University Press, Oxford, pp. 71–98.Google Scholar
  30. Morgane, P. J., Glezer, I. I. and Jacobs, M. S., 1988, Visual cortex of the dolphin: An image analysis study, J. Comp. Neurol., 273: 3–25.PubMedCrossRefGoogle Scholar
  31. Morgane, P. J., Glezer, I. I. and Jacobs, M. S., 1990, in press, Comparative and evolutionary anatomy of visual cortex of dolphin, in: “Cerebral Cortex, Vol. 8. Evolution and Comparative Anatomy of Cerebral Cortex.” E. G. Jones and A. Peters, eds., Plenum Press, New York.Google Scholar
  32. Pirlot, P., 1987, Contemporary brain morphology in ecological and ethological perspectives, J. Hirnforsch., 28: 145–211.PubMedGoogle Scholar
  33. Poliakov, G. I., 1964, Development and complication of the cortical part of the coupling mechanism in the evolution of vertebrates, J. Hirnforsch., 7: 253–273.PubMedGoogle Scholar
  34. Ramón y Cajal, S., 1955, “Studies on the Cerebral Cortex”, Year Book Publishers, Inc., Chicago, 179 pp.Google Scholar
  35. Ramón y Cajal, S., 1911, “Histologie du Système Nerveux de L’Homme et des Vertébrés”, Vol. II, Maloine, Paris.Google Scholar
  36. Ramón-Moliner, E., 1975, Specialized and generalized dendritic patterns, in: “Golgi Centennial Symposium: Perspectives in Neurobiology”, M. Santini, ed., Raven Press, New York, 87–100.Google Scholar
  37. Ramón-Moliner, E. and Nauta, W. J. H., 1966, The isodendritic core of the brainstem, J. Comp. Neurol., 126: 311–336.PubMedCrossRefGoogle Scholar
  38. Romer, A. S., 1966, “Vertebrate Paleontology”, 3rd Ed., Univ. of Chicago Press, Chicago, 468 pp.Google Scholar
  39. Sanides, F., 1969, Comparative architectonics of the neocortex of mammals and their evolutionary interpretation, Ann. New York Acad. Sci., 167: 404–423.CrossRefGoogle Scholar
  40. Sanides, F., 1970, Functional architecture of motor and sensory cortices in primates in the light of a new concept of neocortex evolution, in: “The Primate Brain”, C. R. Noback and W. Montagna, eds., Appleton-Century Crofts, New York, 137–208.Google Scholar
  41. Sanides, F., 1972, Representation in the cerebral cortex and its areal lamination patterns, in: “The Structure and Function of Nervous Tissue”, G. H. Bourne, ed., Academic Press, New York, 329–453.Google Scholar
  42. Sanides, F. and Sanides, D., 1972, The “extraverted neurons” of the mammalian cerebral cortex, Zeit. Anat. Entwickl.-Gesch., 136: 272–293.CrossRefGoogle Scholar
  43. Sanides, D. and Sanides, F., 1974, A comparative Golgi study of the neocortex in insectivores and rodents, Zeit. Mikrosk. Anat. Forsch., 88: 957–977.Google Scholar
  44. Simpson, G. G., 1945, The principles of classification and a classification of mammals, Bull. Amer. Mus. Nat. Hist., 85: 1–350.Google Scholar
  45. Sokolov, V. E., Ladygina, T. F. and Supin, A. Ya., 1972, Localization of sensory zones in the dolphin’s cerebral cortex, Dokl. Akad. Nauk SSSR, 202: 490–493.PubMedGoogle Scholar
  46. Supin, A. Ya., Mukhametov, L., Ladygina, T., Popov, V., Mass, A. and Polyakova, I., 1978, Electrophysiologic study of the dolphin brain, Nauka Press, Moscow, 29–85.Google Scholar
  47. Valverde, F., 1983, A comparative approach to neocortical organization based on the study of the brain of the hedgehog (Erinaceus europaeus), in: “Ramon y Cajal’s Contribution to the Neurosciences”, S. Grisolia, C. Guerri, F. Samson, S. Norton and F. Reinoso-Suàrez, eds., Elsevier, Amsterdam, 149–170.Google Scholar
  48. Valverde, F, and Facal-Valverde, M.V., 1986, Neocortical layers I and II of the hedgehog (Erinaceus europaeus). I. Intrinsic organization, Anat. Embryol., 173: 413–430.PubMedCrossRefGoogle Scholar
  49. Zhukova, G. P., 1953, On development of the cortical part of the motor analyzer, Arkhiv Anat. Gistol. Embriol., 30: 32–38.Google Scholar
  50. Zvorykin, V. P., 1977, Principles of structural organization of the cetacean neocortex, Arkhiv Anat. Gistol. Embriol., 72: 5–22.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Peter J. Morgane
    • 1
  • Ilya I. Glezer
    • 1
    • 2
  1. 1.Worcester Foundation for Experimental BiologyShrewsburyUSA
  2. 2.Department of Cell Biology and AnatomyCity University of New York Medical SchoolNew YorkUSA

Personalised recommendations