Three-Dimensional Reconstructions of the Dolphin EAR

  • Darlene R. Ketten
  • Douglas Wartzok
Part of the NATO ASI Series book series (NSSA, volume 196)

Abstract

The umwelt or perceptual world of odontocetes is largely defined by acoustic cues imperceptible to humans. Like bats, they use ultrasonic frequencies to echolocate. To penetrate this acoustic world, we must use indirect anatomical and psychophysical techniques. While bat research has incorporated anatomy and physiology to describe neural processing of echolocation signals, cetacean research, hampered by practical and legal restrictions, depends largely upon spectral and temporal analyses of emitted sounds coupled with behavioral observations. From these investigations, we have gained considerable information about the psycho-acoustics of dolphin echolocation, but we still know little about the receptor anatomy.

Keywords

Basilar Membrane Spiral Ganglion Basal Turn Spiral Ligament Tectorial Membrane 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Au, W.W.L., Floyd, R.W., Penner, R.H. and Murchison, A.E., 1974, Measurement of echolocation signals of the Atlantic Bottle-nosed dolphin, Tursiops truncatus montagu, in open waters, T. Acoust. Soc. of Am., 56: 1280–1290.CrossRefGoogle Scholar
  2. Brownlee, S., 1983, Correlations between Sounds and Behavior in the Hawaiian Spinner Dolphin, Stenella longirostris, M.S. thesis, University of California, Santa Cruz.Google Scholar
  3. Bruns, V., 1976, Peripheral auditory tuning in the Doppler shift compensating bat, Rhinolophus ferrumequinum: II. Frequency mapping in the cochlea, T. Comp. Physiol., 106: 77–86.CrossRefGoogle Scholar
  4. Bruns, V. and Schmieszek, E.T., 1980, Cochlear innervation in the greater horseshoe bat: Demonstration of an acoustic fovea, Hearing Res., 3: 27–43.CrossRefGoogle Scholar
  5. Bullock, T.H., Grinnell, A.D., Ikezono, E., Kameda, K., Katsuki, Y., Nomoto, M., Sato, O., Suga, N., and Yanagisawa, K., 1968, Electrophysiological studies of central auditory mechanisms in cetaceans, Z. vergl. Physiol., 59: 117–156.Google Scholar
  6. Bullock, T., and Ridgway, S., 1972, Evoked potentials in the central auditory system of alert porpoises to their own and artificial sounds, Tour. Neurobiol., 3: 79–99,CrossRefGoogle Scholar
  7. Busnel, R-G., and Dziedzic, A., 1966, Acoustic signals of the pilot whale Globicephala melaena and of the porpoises Delphinus delphis and Phocoena phocoena, in: “Whales, Dolphins, and Porpoises,” K.S. Norris, ed., University of California Press, Berkeley.Google Scholar
  8. Caldwell, M.C., and Caldwell, D.K., 1967, Intraspecific transfer of information via pulsed sound in captive odontocete cetaceans, in.: “Animal Sonar Systems: Biology and Bionics, II,” R-G. Busnel, ed., Laboratoire de Physiologie Acoustique, Jouy-en-Josas.Google Scholar
  9. Caldwell, M.C. and Caldwell, D. K., 1971, Statistical evidence for individual signature whistles in Pacific whitesided dolphins, Lagenorhynchus obliquidens, Cetology, 3: 1–9.Google Scholar
  10. Camhi, J.M., 1984, “Neuroethology: Nerve Cells and the Natural Behavior of Animals,” Sinauer Assoc, Inc., Sunderland.Google Scholar
  11. Diercks, K.J., 1972, Biological sonar systems: A bionics survey, Applied Research Laboratories, ARL-TR-72–34, University of Texas.Google Scholar
  12. Diercks, K.J., Trochta, R.T., Greenlaw, R.L., and Evans, W.E., 1971, Recording and analysis of dolphin echolocation signals, T. Acoust. Soc. Am., 49: 1729–1732.CrossRefGoogle Scholar
  13. Evans, W.E., 1967, Vocalizations among marine mammals, in: “Marine Bio-Acoustics,” W.N. Tavolga, ed., Pergamon, New York.Google Scholar
  14. Evans, W.E., 1973, Echolocation by marine delphinids and one species of fresh water dolphin, T. Acoust. Soc. Am., 54: 191–199.CrossRefGoogle Scholar
  15. Evans, W.E., and Prescott, J.H., 1962, Observations of the sound production capabilities of the bottlenose porpoise: A study of whistles and clicks, Zoologica, 47: 121–128.Google Scholar
  16. Feng, W., Liang, C., Wang, J., and Wang, X., 1986, Morphometric and Stereoscopic Studies on the Spiral and Vestibular Ganglia of Lipotes vexillifer., (prepubl.).Google Scholar
  17. Firbas, W., 1972, Über anatomische Anpassungen des Hörorgans an die Aufnahme hoher Frequenzen, Monatsschr. Ohr. Laryn.-Rhinol., 106: 105–156Google Scholar
  18. Fleischer, G., 1976, Hearing in extinct cetaceans as determined by cochlear structure, Tour. Paleon., 50: 133–152.Google Scholar
  19. Fraser, F., and Purves, P., 1960, Hearing in cetaceans: Evolution of the accessory air sacs in the structure and function of the outer and middle ear in Recent cetaceans, Bull. Brit. Mus. Nat. Hist., 7: 1–140.Google Scholar
  20. Graves, W.L., Carey, G.A., Benac, S.L., and Cameron, L.W., 1984, Modeling and Graphic Display System for Cardiovascular Research Using Random 3-D Data, IEEE 1984 Int. Symp. on Medical Images and Icons, 304–308.CrossRefGoogle Scholar
  21. Grinnell, A.D., 1963, The neurophysiology of audition in bats: Intensity and frequency parameters, T. Physiol., 167: 38–66.Google Scholar
  22. Guild, S.R., 1921, A graphic reconstruction method for the study of the organ of Corti, Anat. Rec. 22: 141–157.CrossRefGoogle Scholar
  23. Hinchcliffe, R., and Pye, A. 1968, The cochlea in Chiroptera: A quantitative approach, Int. Audiol., 7: 259–266.CrossRefGoogle Scholar
  24. Hinchcliffe, R., and Pye, A., 1969, Variations in the middle ear of the Mammalia, T. Zool., 157: 277–288.Google Scholar
  25. Iurato, S., 1962, Functional implications of the nature and submicroscopic structure of tectorial and basilar membranes, I. Acoust. Soc. of Am., 34: 1368–1395.Google Scholar
  26. Kamminga, C.F., Engelsma, F.J., and Terry, R.P., 1989, Acoustic observations and comparison on wild, captive and open water Sotalia and Inia, Eighth Bienn. Conf. Biol. Mar. Mamm., 33.Google Scholar
  27. Kasuya, T.. 1973, Systematic consideration of recent toothed whales based on the morphology of tympano-periotic bone, Sci. Rep. Whale Res. Inst., 25: 1–103.Google Scholar
  28. Kellogg, W.N., 1959, Auditory perception of submerged objects by porpoises, J. Acoust. Soc. Am., 31: 1–6.CrossRefGoogle Scholar
  29. Ketten, D. R., 1984, Correlations of Morphology with Frequency for Odontocete Cochlea: Systematics and Topology, Ph.D. thesis, The Johns Hopkins University, Baltimore.Google Scholar
  30. Knudsen, E.I., 1981, The Hearing of the barn owl, Sei Am., 245(6): 113–125.Google Scholar
  31. Long, G.R., 1980, Some psychophysical measurements of frequency in the greater horseshoe bat, in: “Psychophysical, Psychological, and Behavioural Studies in Hearing,” G. van den Brink and F. Bilsen, eds., Delft University Press, Delft.Google Scholar
  32. Maue-Dickson, W., Dickson, D.R., and Pullen, F.W., 1983, “Computed Tomographic Atlas of the Head and Neck,” Little, Brown and Co., New York.Google Scholar
  33. McCormick, J.G., Weaver, E.G., Palin, G., and Ridgway, S.H., 1970, Sound conduction in the dolphin ear, T. Acoust. Soc. Am., 48: 1418–1428.CrossRefGoogle Scholar
  34. Mehl, B., and Andersen, S., 1973, Echolocation: High-frequency component in the click of the harbor porpoise (Phocoena phocoena L.), T. Acoust. Soc. Am., 57: 1368–1372.CrossRefGoogle Scholar
  35. Montali, R.J., and Migaki, G., 1980, “The Comparative Pathology of Zoo Animals,” Smithsonian Inst. Press, Wash., D.C.Google Scholar
  36. Moore, P.W.B., 1990, Investigations on the control of echolocation pulses in the dolphin, (this volume).Google Scholar
  37. Moran, P.R., Nickles, R.J., and Zagzebski, J.A., 1983, The physics of medical imaging, Phys. Today, July: 36–42.Google Scholar
  38. Nagel, E.L., Morgane, P.J., and McFarland, W.L., 1964, Anesthesia for the bottlenose dolphin, Tursiops truncatus. Science, 146: 1591–1593.Google Scholar
  39. Neuweiler, G., 1980, Auditory processing of echoes: Peripheral processing, in: “Animal Sonar Systems,” R-G Busnel and J.F. Fish, eds., Plenum Press, New York.Google Scholar
  40. Norris, J., and Leatherwood, K., 1981, Hearing in the Bowhead Whale, Balaena mysticetus, as estimated by cochlear morphology, Hubbs Sea World Rsch. Inst. Tech. Rpt. no. 81–132: 15.1–15.49.Google Scholar
  41. Norris, K.S., 1969, The echolocation of marine mammals, in: “The Biology of Marine Mammals,” H.J. Andersen, ed., Academic Press, New York.Google Scholar
  42. Norris, K.S., and Harvey, G.W., 1974, Sound transmission in the porpoise head, T. Acoust. Soc. Am., 56: 659–664.CrossRefGoogle Scholar
  43. Norris, K.S., Harvey, G.W., Burzell, L.A., and Krishna Kartha, D.K., 1972, Sound production in the freshwater porpoise Sotalia cf. fluviatilis Gervais and Deville and Inia geoffrensis Blainville in the Rio Negro Brazil, in: “Investigations on Cetacea,” G. Pilleri, ed., 4: 251–262, University of Berne, Berne.Google Scholar
  44. Norris, K.S., Prescott, J.H., Asa-Dorian, P.V., and Perkins, P., 1961, An experimental demonstration of echolocation behavior in the porpoise, Tursiops truncatus, Montagu, Biol. Bull., 120: 163–176.CrossRefGoogle Scholar
  45. Oelschlager, H. A., 1990, Evolutionary morphology and acoustics in the dolphin skull, (this volume).Google Scholar
  46. Oelschlager, H. A., 1986, Comparative morphology and evolution of the otic region in toothed whales, Am T. Anat., 177: 353–368.CrossRefGoogle Scholar
  47. Pilleri, G., 1983, The sonar system of the dolphins, Endeavour, 7: 59–64.PubMedCrossRefGoogle Scholar
  48. Pollack, G.D., 1980, Organizational and encoding features of single neurons in the inferior colliculus of bats, in: “Animal Sonar Systems,” R-G Busnel and J.F. Fish, eds., Plenum Press, New York.Google Scholar
  49. Popper, A.N., 1980, Sound emission and detection by delphinids, in: “Cetacean Behavior: Mechanisms and Functions,” L.M. Herman, ed., John Wiley and Sons, New York.Google Scholar
  50. Purves, P.E., and Pilleri, G.E., 1983, “Echolocation in Whales and Dolphins,” Academic Press, Inc., Ltd., London.Google Scholar
  51. Reysenbach de Haan, F.W., 1956, Hearing in whales, Acta Otolaryngol., Suppl., 134: 1–114.Google Scholar
  52. Ridgway, S.H., 1980, Electrophysiological experiments on hearing in odontocetes, in: “Animal Sonar Systems,” R-G. Busnel and J.F. Fish, eds., Plenum Press, New York.Google Scholar
  53. Ridgway, S.H., and McCormick, J.G., 1967, Anesthetization of porpoises for major surgery, Science, 158: 510–512.PubMedCrossRefGoogle Scholar
  54. Ridgway, S.H., McCormick, J.G., and Wever, E.G., 1974, Surgical approach to the dolphin’s ear, T. Expl. Zool., 188: 265–276.CrossRefGoogle Scholar
  55. Sales, G., and Pye, D., 1974, “Ultrasonic Communication by Animals,” John Wiley and Sons, New York.CrossRefGoogle Scholar
  56. Schevill, W. E., 1964, Underwater sounds of cetaceans, in: “Marine Bio-Acoustics,” W.N. Tavolga, ed., Pergamon Press, New York.Google Scholar
  57. Schuknecht, H.F., 1953, Technique for study of cochlear function and pathology in experimental animals, Arch. Otolaryngol., 58: 377–397.CrossRefGoogle Scholar
  58. Schuknecht, H.F., and Gulya, A.J., 1986, Anatomy of the Temporal Bone with Surgical Implications. Lea and Feibiger, Philadelphia.Google Scholar
  59. Stinson, M.R., 1983, Implication of ear canal geometry for various acoustical measurements, T. Acoust. Soc. Am., 74(S1): 8.CrossRefGoogle Scholar
  60. Suga, N., 1983, Neural representation of bisonar (sic) information in the auditory cortex of the mustached bat, T. Acoust. Soc. Am., 74(S1): 31.CrossRefGoogle Scholar
  61. Supin, A.Y. and Popov, V.V., 1990, Frequency selectivity of the auditory system of the bottlenosed dolphin Tursiops truncatus, (this volume).Google Scholar
  62. Thomas, J., Chun, N., and Au, W., 1988, Underwater audiogram of a false killer whale (Pseudorca crassidens), T. Acoust. Soc. Am., 84: 936–940.CrossRefGoogle Scholar
  63. Watkins, W., and Schevill, W., 1977, Sperm whale codas, T. Acoust. Soc. Am., 62: 1485–1590.CrossRefGoogle Scholar
  64. Watkins, W.A., and Wartzok, D., 1985, Sensory biophysics of marine mammals, Mar. Mamm. Sci., 3: 219–230.CrossRefGoogle Scholar
  65. West, C. D., 1986, Cochlear length, spiral turns and hearing, 12th International Congress on Acoustics, 1: B-1.Google Scholar
  66. Wever, E.G., McCormick, J.G., Palin, H., and Ridgway, S., 1971a, The cochlea of the dolphin, Tursiops truncatus: The basilar membrane, Proc. Nat. Acad, Sci., U.S.A., 68: 2708–2711.CrossRefGoogle Scholar
  67. Wever, E.G., McCormick, J.G., Palin, H., and Ridgway, S., 1971b, The cochlea of the dolphin, Tursiops truncatus: Hair cells and ganglion cells, Proc, Nat. Acad. Sci., U.S.A., 68: 2908–2912.CrossRefGoogle Scholar
  68. Wever, E.G., McCormick, J.G., Palin, H., and Ridgway, S., 1972, Cochlear structure in the dolphin, Lagenorhynchus obliquidens, Proc. Nat. Acad. Sci., U.S.A., 69: 657–661.CrossRefGoogle Scholar
  69. Wood, F.G., and Evans, W.E., 1980, Adaptiveness and ecology of echolocation in toothed whales, in: “Animal Sonar Systems,” R-G Busnel and J.F. Fish, eds., Plenum Press, New York.Google Scholar
  70. Zwislocki, J., 1981, Sound analyses in the ear: A history of discoveries, Amer. Sci., 69: 184–192.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Darlene R. Ketten
    • 1
  • Douglas Wartzok
    • 2
  1. 1.Department of Otology and LaryngologyHarvard Medical SchoolBostonUSA
  2. 2.Department of Biological SciencesPurdue UniversityFort WayneUSA

Personalised recommendations