A Potential Neural Substrate for Geomagnetic Sensibility in Cetaceans

  • Nicolaas M. Gerrits
  • Ronald A. Kastelein
Part of the NATO ASI Series book series (NSSA, volume 196)

Abstract

Recently, data have been presented which might demonstrate a behavioral response of cetaceans towards the earth’s magnetic field. Different researchers have noted a correlation between live strandings of dolphins and characteristics of the magnetic field, e.g. direction of the field lines and the fieldstrength (Kirschvink et al., 1986; Klinowska, 1988). In the search for a magneto-sensitive organ, considerable effort has been directed towards the distribution of biogenic magnetite particles (Kirschvink et al., 1985). Magnetite particles have been discovered in many taxa including birds and mammals. Relatively high levels of magnetic material have been found in some parts of the brain (cerebellum, midbrain, corpus callosum) and the dura mater of cetaceans and the rhesus monkey (Bauer et al., 1985; Kirschvink, 1981). However, a sensory organ in which such crystals might be expected in a concentrated form has not been demonstrated anatomically. Kirschvink and Gould (1981) proposed a theoretical model in which the rotation of magnetite crystals changes the membrane resistance of a receptor cell to modulate the neuronal discharge frequency, but such a mechanism has not been demonstrated experimentally yet.

Keywords

Hippocampal Formation Mossy Fiber Primary Receptor Mammillary Body Inferior Olivary Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aas, J.-E., 1989, Subcortical projections to the pontine nuclei in the cat, J. Comp. Neurol., 282: 331–354PubMedCrossRefGoogle Scholar
  2. Aas, J.-E., and Brodai, P., 1989, Demonstration of a mamillo-ponto-cerebellar pathway. A multi-tracer study in the cat, Eur. J. Neurosci. 1: 61–74PubMedCrossRefGoogle Scholar
  3. Amaral, D. G., Insausti, R., and Cowan, W. M., 1984, The commissural connections of the monkey hippocampal formation. J. Comp. Neurol., 224: 307–336PubMedCrossRefGoogle Scholar
  4. Apostol, G., and Creutzfeldt, O. D., 1974, Cross-correlation between the activity of septal units and hippocampal EEG during arousal. Brain Res., 67: 65–75PubMedCrossRefGoogle Scholar
  5. Bauer, G. B., Fuller, M., Perry, A., Dunn, J. R., and Zoeger, J., 1985, Magnetoreception and biomineralization of magnetite in Cetaceans, in: “Magnetite Biomineralization and Magnetoreception in Animals: A new Biomagnetism,” J. L. Kirschvink, D. S. Jones, and B. J. McFadden, eds., Plenum Press, New York, pp. 489–507CrossRefGoogle Scholar
  6. Breathnach, A. S., 1960, The cetacean central nervous system, Biol. Rey. Cambridge Phil. Soc., 35: 87–230Google Scholar
  7. Cruce, J. A. F., 1977, An autoradiographic study of the descending connections of the mammillary nuclei in the rat, J. Comp. Neurol., 176: 631–644PubMedCrossRefGoogle Scholar
  8. Demeter, S., Rosene, D. L., and Van Hoesen, G. W., 1985, Interhemispheric pathways of the hippocampal formation, presubiculum, and entorhinal and posterior parahippocampal cortices in the rhesus monkey: The structure and organization of the hippocampal commissures, J. Comp. Neurol., 223: 30–47CrossRefGoogle Scholar
  9. Fanardjian, V. V., and Donhoffer, H., 1970, An electrophysiological study of cerebello-hippocampal relationships in the unrestrained cat, Acta Physiol. Acad. Sci. Hung., 24: 321–333Google Scholar
  10. Gerrits, N. M., Epema, A. H., and Voogd, J., 1984, The mossy fiber projection of the nucleus reticularis tegmenti pontis to the flocculus and adjacent ventral paraflocculus in the cat Neuroscience 11: 627–644PubMedCrossRefGoogle Scholar
  11. Gerrits, N. M., and Voogd, J., 1989, The topographical organization of climbing and mossy fibers afferents in the flocculus and the ventral paaflocculus in rabbit, cat and monkey, Exp. Brain Res. Series. 17: 26–29Google Scholar
  12. Graaf, A. S. de, 1967, Anatomical aspects of the Cetacean brain stem, Van Gorcum, AssenGoogle Scholar
  13. Groenewegen, H. J., Voogd, J., and Freedman, S. L., 1979, The parasagittal zonation within the olivocerebellar projection. II. Climbing fiber distribution in the intermediate and hemispheric parts of the cat cerebellum, J. Comp. Neurol., 183: 551–602PubMedCrossRefGoogle Scholar
  14. Irle, E., and Markowitsch, H. J., 1982, Connections of the hippocampal formation, mamillary bodies, anterior thalamus and cingulate cortex. A retrograde study using horseradish peroxidase in the cat, Exp. Brain Res., 47: 79–94PubMedCrossRefGoogle Scholar
  15. Jelgersma, G., 1934, Das Gehirn der Wassersaugetiere, Verlag J.A. Barth, LeipzigGoogle Scholar
  16. Jungerman, R. L., and Rosenblum, B., 1980, Magnetic induction for sensing of magnetic fields by animals — an analysis, J. Theor. Biol., 87: 25–32PubMedCrossRefGoogle Scholar
  17. Kirschvink, J. L., 1981, Ferromagnetic crystals (magnetite?) in human tissue, J. Exp. Biol., 92: 333–335PubMedGoogle Scholar
  18. Kirschvink, J. L., Dizon, A. E., and Westphal, J.A. 1986, Evidence from strandings for geomagnetic sensitivity in Cetaceans, J. Exp. Biol., 120: 1–24Google Scholar
  19. Kirschvink, J. L., and Gould, J. L., 1981, Biogenic magnetite as the basis of magnetic field sensitivity in animals, Biosystems. 13: 181–201PubMedCrossRefGoogle Scholar
  20. Klinowska, M., 1988, Cetacean “navigation” and geomagnetic fields, J. Navigation. 41: 52–71CrossRefGoogle Scholar
  21. Kooy, F. H., 1920, The inferior olive in Cetacea, Folia Neurobiol. (Leipzig). 11: 647–664Google Scholar
  22. Komeliussen, H. K., and Jansen, J., 1965, On the early development and homology of the central cerebellar nuclei in Cetacea. J. Hirnforsch., 8: 47–56Google Scholar
  23. Larsell, O., 1970, The comparative anatomy and histology of the cerebellum from monotremes through apes, Univ. of Minnesota Press, MinneapolisGoogle Scholar
  24. Meibach, R. C., and Siegel, A., 1977, Efferent connections of the hippocampal formation in the rat. Brain Res., 124: 197–224PubMedCrossRefGoogle Scholar
  25. Mitchell, S. J., Rawlins, J. N. P., Steward, O., and Olton, D. S., 1982, Medial septal area lesions disrupt theta rhythm and cholinergic staining in medial entorhinal cortex and produce impaired radial arm maze behavior in rats J. Neurosci., 2: 292–302PubMedGoogle Scholar
  26. Morgane, P. J., and Jacobs, M. S., 1972, Comparative anatomy of the cetacean nervous system, in: “Functional Anatomy of Marine Mammals,” Vol. 1, R. J. Harrison, ed., Academic Press, New York, pp. 117–224Google Scholar
  27. Nauta, W. J. H., 1956, An experimental study of the fornix system in the rat, J. Comp. Neurol., 104: 247–271PubMedCrossRefGoogle Scholar
  28. Newman, P. P., and Reza, H., 1979, Functional relationships between the hippocampus and the cerebellum: an electrophysiological study of the cat, J. Physiol., 287: 405–426PubMedGoogle Scholar
  29. Ogawa, T., 1935, Ueber den Nucleus ellipticus und den Nucleus ruber beim Delphin, Arb. Anat. Inst. Sendai. 17: 55–61Google Scholar
  30. O’Keefe, J., and Nadel, L., 1978, The hippocampus as a cognitive map, Clarendon Press, OxfordGoogle Scholar
  31. Ranck, J. B. Jr., 1973, Studies on single neurons in dorsal hippocampal formation and septum in unrestrained rats, Exp. Neurol., 41: 462–531CrossRefGoogle Scholar
  32. Rosenstock, J., Field, T. D., and Greene, E., 1977, The role of mammillary bodies in spatial memory, Exp. Neurol., 55: 340–352PubMedCrossRefGoogle Scholar
  33. Rupniak, N. M. J., and Gaffan, D., 1987, Monkey hippocampus and learning about spatially directed movements, J. Neurosci., 7: 2331–2337PubMedGoogle Scholar
  34. Sager, O., Florea-Ciocoiu, V., and Rogozea, R., 1970, Study of auditory projections to cerebellum and some cerebello-hippocampo-neocortical circuits, Int. J. Neurol., 7: 218–231PubMedGoogle Scholar
  35. Saint-Cyr, J. A., and Woodward, D. J., 1980, Activation of mossy and climbing fiber pathways to the cerebellar cortex by stimulation of the fornix in the rat, Exp. Brain. Res., 40: 1–12PubMedGoogle Scholar
  36. Siegel, A., and Tassoni, J. P., 1971, Differential efferent projections from the ventral and dorsal hippocampus of the cat, Brain Behav. Evol., 4: 18–200Google Scholar
  37. Stumpf, C., 1965, Drug action on electrical activity of the hippocampus, Int. Rev. Neurobiol., 8: 77–138PubMedCrossRefGoogle Scholar
  38. Swanson, L. W., and Cowan, W. M., 1977, An autoradiographic study of the organization of the efferent connections of the hippocampal formation in the rat, J. Comp. Neurol., 172: 49–84PubMedCrossRefGoogle Scholar
  39. Swanson, L. W., Wyss, J. M., and Cowan, W. M., 1978, An autoradiographic study of the organization of intrahippocampal association pathways in the rat, J. Comp. Neurol., 181: 681–716PubMedCrossRefGoogle Scholar
  40. Verhaart, W. J. C., 1970, Comparative anatomical aspects of the mammalian brain stem and spinal cord, Van Gorcum, AssenGoogle Scholar
  41. Vanderwolf, C. H., 1969, Hippocampal electrical activity and voluntary movement in the rat, Electroenceph. Clin. Neurophysiol., 26: 407–418PubMedCrossRefGoogle Scholar
  42. Voogd, J., 1964, The cerebellum of the cat. Structure and fibre connections, Van Gorcum, AssenGoogle Scholar
  43. Walberg, F., 1974, Descending connections from the mesencephalon to the inferior olive: an experimental study in the cat, Exp. Brain Res. 20: 145–156PubMedCrossRefGoogle Scholar
  44. Wilson, C. L., Motter, B. C., and Lindsley, D. B., 1976, Influences of hypothalamic stimulation upon septal and hippocampal electrical activity in the cat, Brain Res., 197: 55–68CrossRefGoogle Scholar
  45. Wyss, J. M., Swanson, L. W., and Cowan, W. M., 1979, A study of subcortical afferents to the hippocampal formation in the rat, Neuroscience. 4: 463–476PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Nicolaas M. Gerrits
    • 1
  • Ronald A. Kastelein
    • 2
  1. 1.Department of AnatomyErasmus UniversityRotterdamThe Netherlands
  2. 2.Harderwijk Marine Mammal ParkHarderwijkThe Netherlands

Personalised recommendations