Forehead Anatomy of Phocoena Phocoena and Cephalorhynchus Commersonii: 3-Dimensional Computer Reconstructions with Emphasis on the Nasal Diverticula

  • Mats Amundin
  • Ted Cranford
Part of the NATO ASI Series book series (NSSA, volume 196)


Sound generation in odontocetes takes place in the upper nasal passage, powered by air pressure created within the bony nares (Norris et al., 1971; Diercks et al., 1971; Hollien, 1976; Dormer, 1979; Ridgway et al., 1980; Amundin and Andersen, 1983; Cranford, 1988). Cranford (1988) describes two pairs of fatty bodies, labelled dorsal bursae, situated in the lateral corners of the spiracular cavity in the spinner dolphin, which may function as “sound transducers and/or conductors of sound” produced at the bursae or in their vicinity. Two posterior branches of the melon connect to the anterior bursae. It also has been suggested that air sacs around the spiracular cavity may guide the emitted sonar pulses rostrally (Norris, 1964; Dormer, 1974; Giro and Dubrovskii, 1975; Alcuri, 1980). Additional sonar beam formation is thought to take place in the melon, as a result of the sound velocity topography of special “acoustic” fats (Norris and Harvey, 1974; Litchfield et al., 1979; Varanasi et al., 1982).


Bottlenosed Dolphin Sound Production Harbour Porpoise Carboxy Methyl Cellulose Beaked Whale 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alcuri, G., 1980, The role of cranial structures in Odontocete sonar signal emission, in: Animal Sonar Systems, Fish, J F. (Ed.), Plenum Press, New York.Google Scholar
  2. Altes, R. A., Evans, W. E., and Johnson, C. S., 1975, Cetacean echolocation signals and a new model for the human glottal pulse, J. Acoust. Soc. Am., 57: 1221.PubMedCrossRefGoogle Scholar
  3. Amundin, M., and Andersen, S. H., 1983, Bony nares air pressure and nasal plug muscle activity during sound production in the harbour porpoise, Phocoena phocoena and the bottlenosed dolphin, Tursiops truncatus, J. Exp. Biol., 105: 275.Google Scholar
  4. Amundin, M. (in prep), The effect of substituting air with a Helium/Oxygen mixture on the click spectrum of the harbour porpoise, Phocoena phocoena.Google Scholar
  5. Amundin, M., Kallin, E., and Kallin, S., 1988, The study of the sound production apparatus in the harbour porpoise, Phocoena phocoena, and the jacobita, Cephalorynchus comroersonii, by means of serial cryo-microtome sectioning and 3-D computer graphics, in: Animal Sonar. Processes and Performance, P. E. Nachtigall, P.W.B. Moore, (eds), Plenum Press, New York, pp 61–66.CrossRefGoogle Scholar
  6. Busnel, R-G., and Dziedzic, A., 1966, Acoustic signals of the Pilot whale, Globicephala melaena and of the porpoises Delphinus delphis and Phocoena phocoena, in: Whales, dolphins and porpoises, K. S. Norris, (ed), Univ. Calif. Press, Berkeley and Los Angeles, pp 607–646.Google Scholar
  7. Busnel, R-G., Dziedzic, A., and Escudie, B., 1969. Autocorrélation et analyse spectrale des signaux “sonar” de deux espèces de Cétacéa Odontocétes utilisant les basses fréquences. C. R. Acad. Sc. Paris, 269(3):365–367.Google Scholar
  8. Cranford, T. W., 1985, Cephalic symbols II, Movie film shown at the Conference of Marine Mammalogy in Miami, Florida.Google Scholar
  9. Cranford, T. W., 1988, The anatomy of acoustic structures in the spinner dolphin forehead as shown by X-ray computed tomography and computer graphics, in: Animal Sonar: Processes and Performance, P. E. Nachtigall, P. W. Moore, (eds). Plenum Press, New York, pp 67–77.CrossRefGoogle Scholar
  10. Diercks, K. J., Trochta, R. T., and Greenlaw, C. F., 1971, Recording and analysis of dolphin echolocation signals, J. Acoust. Soc. Am. 49: 1730.Google Scholar
  11. Dormer, K. J., 1974, The mechanism of sound production and measurement of sound processing, Doctoral dissertation, University of California, Los Angeles.Google Scholar
  12. Dormer, K. J., 1979, Mechanisms of sound production and air recycling in delphinids: Cineradiographic evidence, J. Acoust. Soc. Am. 65: 229.CrossRefGoogle Scholar
  13. Dubrovskii, N. A., Krasnov, P. S., and Titov, A. A., 1971, On the emission of echolocation signals by the Azov Sea harbor porpoise, Soy. Phys. Acoust., 16: 444–447 (Akust. Zh. 16:521–525, 1970).Google Scholar
  14. Dudok van Heel, W. H., 1981, Investigations on Cetacean sonar. III. A proposal for an ecological classification of Cetacetes in relation to sonar. Aquatic Mammals 8: 65–68.Google Scholar
  15. Evans, W. E., and Maderson, P. F. A., 1973, Mechanisms of sound production in Delphinid Cetaceans: A review and some anatomical considerations, Am. Zool. 13: 1205–1213Google Scholar
  16. Evans, W. E., and Awbrey, F. T., 1988, Natural history of marine mammal echolocation: feeding strategies and habitat, in: Animal Sonar. Processes and Performance, P. E. Nachtigall and P. W. B. Moore (eds), Plenum Press, New York, pp 521–534.CrossRefGoogle Scholar
  17. Fraser, F- C., and Purves, P. E., 1960, Hearing in Cetaceans, Bull. Br. Mus. Nat. Hist. 7: 1–140.Google Scholar
  18. Giro, L. P., and Dubrovskii, N. A., 1975, Possible role of the pericranial diverticula in the production of dolphin echo-location signals, Sov. Phys. Acoust., 20(5): 428–430.Google Scholar
  19. Green, R. F., Ridgway, S. H., and Evans, W. E., 1980, Functional and descriptive anatomy of the bottlenosed dolphin nasolaryngeal system with special reference to the musculature associated with sound production, in: Animal Sonar Systems, R-G. Busnel and J. F. Fish (eds), Plenum Publ. Corp. New York, pp 199–238.CrossRefGoogle Scholar
  20. Gruhl, K., 1911, Beiträge zur Anatomie und Physiologie der Cetaceen nase, Jena Z. Naturw., (N.F.), 47: 367–414.Google Scholar
  21. Gurevich, V. S., 1980, A reconstructing technique for the nasal air sacs system in toothed whales, in: Animal Sonar Systems, J. F. Fish (ed), Plenum Press, New York.Google Scholar
  22. Heyning, J. H., 1989, Comparative facial anatomy of beaked whales (Ziphiidae) and a systematic revision among the families of extant Odontoceti, Contributions in Science, Nat. Hist. Mus. of Los Angeles County, 405: 1–64.Google Scholar
  23. Hollien, H., Hollien, P., Caldwell, D. K., and Caldwell, M. C., 1976, Sound production by the Atlantic bottlenosed dolphin, Tursiops truncatus, Cetoloqy 26: 1–8.Google Scholar
  24. Hosokawa, H., and Kamiya, T., 1965, Sections of the dolphin’s head, (Stenella coeruleoalba), Sci. Repts. Whales Res. Inst., 19: 105.Google Scholar
  25. Kamminga, C., and Wiersma, H., 1981, Investigations on Cetacean sonar II. Acoustical similarities and differences in Odontocete sonar signals. Aquatic Mammals, 8: 41.Google Scholar
  26. Kamminga, C., and Wiersma, H., 1982, Investigations on Cetacean sonar V. The true nature of the sonar sounds of Cephalorhyncus commersonii, Aquatic Mammals, 9: 95.Google Scholar
  27. Lawrence, B., and Schevill, W. E., 1956, The functional anatomy of the delphinid nose, Mus. Comp. Zool. Bull., 114: 103.Google Scholar
  28. Litchfield, C., Karol, R., Mullen, M E., Dilger, J P., and Luthi, B., 1979, Physical factors influencing refraction of the echolocative sound beam in delphinid Cetaceans, Marine Biology, 52: 285.CrossRefGoogle Scholar
  29. Mead, J. G., 1972, Anatomy of the external nasal passage and facial complex in the Delphinidae (Mammalia: Cetacea), Doctoral dissertation. University of Chicago.Google Scholar
  30. Mead, J. G., 1975, Anatomy of the external nasal passage and facial complex in the Delphinidae (Mammalia: Cetacea), Smithsonian Contributions to Zoology, 207: 1.CrossRefGoogle Scholar
  31. Moris, F., 1969, Etude anatomique de la region cephalique du marsouin, Phocaena phocaena L. (Cetace Odontocete), Mammalia, 33: 666–726.Google Scholar
  32. Mönl, B., and Andersen, S. H., 1973, Echolocation: high frequency component in the click of the harbour porpoise (Phocoena phocoena L.), J. Acoust. Soc. Am. 54: 1368.CrossRefGoogle Scholar
  33. Norris, K. S., 1964, Some problems in echolocation in Cetaceans. in: Marine Bio-Acoustics, W. N. Tavolga (ed), Pergamon Press, New York, pp 317–336.Google Scholar
  34. Norris, K. S., Dormer, K. J., Pegg, J., and Liese, G. J., 1971, The mechanism of sound production and air recycling in porpoises: a preliminary report, in: “Proc. 8th Annual Conf. Biol. Sonar and Diving Mammals”, Menlo Park, California., pp 113.Google Scholar
  35. Norris, K. S., and Harvey, G. W., 1974, Sound transmission in the porpoise head, J. Acoust. Soc. Am., 56: 659–664.PubMedCrossRefGoogle Scholar
  36. Nämnden för skoglig flygbildsteknik, 1980, Flygbildsteknik och fjärranalys, Solna, Sweden.Google Scholar
  37. Purves, P. E., 1966, Anatomical and experimental observations on the Cetecean sonar system, in: Proc. Sym. Bionic Models Animal Sonar System, R-G Busnel (ed), Frascati, Italy.Google Scholar
  38. Purves, P. E., 1967, Anatomical and experimental observations on the Cetecean sonar system, in: “Animal Sonar Systems, Biology and Bionics”, R-G Busnel (ed), Imprimerie Louis Jean, GAP (Hautes Alpes), France.Google Scholar
  39. Purves, P. E., and Pilleri, G. E., 1983, “Echolocation in whales and dolphins”, Academic Press, London.Google Scholar
  40. Rauschning, W., 1979, Serial cryosectioning of human knee-joint specimen for a study of functional anatomy, Science Tools, The LKB Instrument Journal, Special Issue, 26: 47.Google Scholar
  41. Ridgway, S. H., Carder, D. A., Green, R. F., Gaunt, A. S., Gaunt, S. L. L., and Evans, W. E., 1980, Electromyography and pressure events in the nasolaryngeal system of dolphins during sound production, in: “Animal Sonar Systems”, R-G. Busnel and J. F. Fish (eds), Plenum Publ. Corp., New York.Google Scholar
  42. Schenkkan, E. J., 1973, On the comparative anatomy and function of the nasal tract in Odontocetes (Mammalia, Cetacea), Bijdr. Dierk., 43: 127.Google Scholar
  43. Schevill, W. E., Watkins, W. A., and Ray, C., 1969, Click structure in the porpoise, Phocoena phocoena, J. Mammal., 50: 721–728.CrossRefGoogle Scholar
  44. Sibson, F., 1848, On the blow-hole of the porpoise, Roy. Soc. Lond., Phil. Trans. pp 117–123.Google Scholar
  45. Uliberg, S., 1977, The technique of whole body autoradiography cryosectioning of large specimen. Science Tools, The LKB Instrument Journal, Special Issue.Google Scholar
  46. Varanasi, U., Markey, D., and Malins, D. C., 1982, Role of isovaleroyl lipids in channeling of sound in the porpoise melon, Chemistry and Physics of lipids, 31: 237.PubMedCrossRefGoogle Scholar
  47. Watkins, W. A., Schevill, W. E., and Best, P. B., 1977, Underwater sounds of Cephalorhynchus heavisidii (Mammalia: Cetacea), J. Mammal. 58(3):316–320.CrossRefGoogle Scholar
  48. Wiersma, H., 1982, Investigations on Cetacean Sonar IV. A comparison of wave shapes of Odontocete sonar signals, Aquatic Mammals 9(2): 57–66.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Mats Amundin
    • 1
  • Ted Cranford
    • 2
  1. 1.Zoological Institute, Department of Functional MorphologyUniversity of Stockholm and Kolmården ZooKolmårdenSweden
  2. 2.Institute of Marine ScienceUniversity of CaliforniaSanta CruzUSA

Personalised recommendations