Superconducting Properties of Oxygen Deficient YBa2Cu3O7-δ

  • W. K. Kwok
  • G. W. Crabtree
  • B. W. Veal
  • H. Claus
  • M. Guillot


An important and interesting feature of the high temperature superconductor YBa2Cu3O7-δ is the dramatic effect of oxygen vacancies on its superconducting properties. 1–10 As oxygen is systematically removed from the structure, the orthorhombic distortion decreases and the system undergoes a structural transition to a tetragonal phase. Simultaneously, TC falls monotonically, with superconductivity disappearing at approximately the stoichiometry where the orthorhombic to tetragonal structural transition occurs. The curve of TC versus δ shows two regions of stable superconductivity where TC is not a strong function of δ. For δ near zero, there is a nearly flat region where TC is close to 90 K and for.35 < δ <. 45 there is a plateau where TC remains constant at approximately 60 K. The width of the inductive transition in these two regions is narrow suggesting that the superconductivity is due to a homogeneous well defined phase. In order to investigate the mechanisms and properties of superconductivity in YBa2Cu3O7-δ it is necessary to characterize and compare the superconducting behavior in these two phases. In this paper we present resistivity and magnetization data from which we determine the upper critical field Hc2 and compare the relative pinning strengths of polycrystalline samples with δ = 0.04 and 0.4.


Twin Boundary Critical Field Superconducting Property Superconducting Transition Temperature Oxygen Stoichiometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. K. Kwok, G. W. Crabtree, A. Umezawa, B. W. Veal, J. D. Jorgensen, S. K. Malik, L. J. Nowicki, A. P. Paulikas, L. Nunez, Phys. Rev. B 37 (Jan. 1988).Google Scholar
  2. 2.
    J. D. Jorgensen, B. W. Veal, W. K. Kwok, G. W. Crabtree, A. Umezawa, L. J. Nowicki, A. P. Paulikas, Phys. Rev. B 36, 5731 (1987).CrossRefGoogle Scholar
  3. 3.
    J. D. Jorgensen, M. A. Beno, D. G. Hinks, L. Soderholm, K. J. Volin, R. L. Hitterman, J. D. Grace, I. K. Schuller, C. U. Segre, K. Zhang, M. S. Kleefich, Phys. Rev. B 36, 3608 (1987).CrossRefGoogle Scholar
  4. 4.
    J. van den Berg, C. J. van der Beek, P. H. Kes, G. J. Nieuwenhuys, J. A. Mydosh, H. W. Zandbergen, F. P. F. van Berke’, R. Steens, and D. J. W. Ijdo, Europhys. Lett., 4, 737 (1987).CrossRefGoogle Scholar
  5. 5.
    D. C. Johnston, A. J. Jacobson, J. M. Newsam, J. T. Lewandowski, D. P. Goshorn, D. Xie, and W. B. Yelon, Chemistry of High-Temperature,edited by D. L. Nelson, M. S. Whittingham, and T. F. George, ( American Chemical Society, Washington, DC, 1987 ), p. 136.Google Scholar
  6. 6.
    P. Monod, M. Ribault, F. D’Yvoire, J. Jegoudez, G. Collin, and A. Revcolevschi, J. Physique 48, 1369 (1987).CrossRefGoogle Scholar
  7. 7.
    E. Takayama-Muromachi, Y. Uchida, M. Ishii, T. Tanaka, K. Kato, Jpn. J. Appl. Phys. 26, L1156 (1987).CrossRefGoogle Scholar
  8. 8.
    R. J. Cava, B. Batlogg, C. H. Chen, E. A. Rietman, S. M. Zahurak,and D. Werder, Phys. Rev. B 36, 5719 (1987).CrossRefGoogle Scholar
  9. 9.
    M. Tokumoto, H. Ihara, T. Matsubara, M. Hirabayashi, N. Terada, H. Oyanagi, K. Murata, Y. Kimura, Jpn. J. Appl. Phys. 26, L1565(1987).Google Scholar
  10. 10.
    G. W. Crabtree, W. K. Kwok, H. Claus, B. W. Veal, J. D. Jorgensen,L. H. Nunez, A. Umezawa, A. P. Paulikas (to be published)Google Scholar
  11. 11.
    H. Claus, G. W. Crabtree, J. Z. Liu, W. K. Kwok, A. Umezawa, Proceedings of the MMM Conference, Nov.9–12, 1987, Chicago, IL., Journ. of Appl. Phys., (in press).Google Scholar
  12. 12.
    T. Tamegai, A. Watanabe, I. Oguro, Y. Iye, Jpn. J. Appl. Phys. 26, L1304(1987)Google Scholar
  13. 13.
    K. Hayashi, K. Murata, K. Takahashi, M. Tokumoto, H. Ihara, M. Hirabayashi, H. Terada, H. Koshizuka, Y. Kimura, Jpn. J. Appl.Phys. 26, L1240(1987)Google Scholar
  14. 14.
    Y. Iye, T. Tamegai, H. Takeya, H. Takei, Jpn. J. Appl. Phys. 26, L1057(1987)Google Scholar
  15. 15.
    T. Takabatake, M. Ishikawa, Y. Nakazawa, I. Oguro, T. Sakakibara, T. Goto, Jpn. J. Appl. Phys. 26, L978(1987)Google Scholar
  16. 16.
    J. S. Moodera, R. Meservey, J. E. Tkaczyk, C. X. Hao, G. A. Gibson, P. M. Tedrow (submitted to Phys. Rev. B)Google Scholar
  17. 17.
    T. K. Worthington, W. J. Gallagher, T. R. Dinger, Phys. Rev. Lett. 59, 1160 (1098)CrossRefGoogle Scholar
  18. 18.
    G. W. Crabtree, J. Z. Liu, A. Umezawa, W. K. Kwok, C. H. Sowers, S. K. Malik, B. W. Veal, D. J. Lam, M. B. Brodsky, and J. W. Downey, Phys. Rev. B 36, 4021 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • W. K. Kwok
    • 1
  • G. W. Crabtree
    • 1
  • B. W. Veal
    • 1
  • H. Claus
    • 2
  • M. Guillot
    • 3
  1. 1.Materials Science DivisionArgonne National LaboratoryArgonneUSA
  2. 2.Department of PhysicsUniversity of Illinois at ChicagoChicagoUSA
  3. 3.Laboratoire Louis NeelGrenoble CedexFrance

Personalised recommendations