Raman Investigations on the Y-Ba-Cu-O-System

  • P. Knoll
  • W. Kiefer


The discovery of ceramic perovskites with superconductivity above 20K1 and 80K2 started a new discussion about the superconducting mechanism. Whether the new ceramic superconductors can be described within an ordinary BCS- or Eliashberg-formalism, or more exotic mechanisms as solitons, polarons or excitons are responsible for the superconductivity, is the most interesting question. Raman scattering is based on the electron-phonon interaction, and, therefore, can sensitively probe properties of the pure electronic and phonon states together with their interaction. Because of the long wavelength (compared to interatomic distances) of the photons, this method is restricted to investigations of the centre of the Brillouin-zone, therefore, one can not assume to observe the superconducting mechanism directly. However, important properties as, e.g., the superconducting gap, can in principle be measured3,4. In addition, changes in the Raman spectrum due to structural changes or composition of the material in comparison with the change of superconducting properties will give valuable information about the intrinsic properties of the material. This information is needed for an understanding of the superconducting behaviour5.


Raman Spectrum Phonon Frequency Electronic Band Structure White Phase Ceramic Superconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. G. Bednorz and K. A. Müller, Z. Phys. B64: 189 (1986).CrossRefGoogle Scholar
  2. 2.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Y. J. Huang, Y. Q. Wang, and C. W. Chu, Phys. Rev. Lett. 58: 908 (1987).CrossRefGoogle Scholar
  3. 3.
    A. A. Abrikosov and L. A. Fal’kovskii, Soviet Phys.-JETP 13: 179 (1961).Google Scholar
  4. 4.
    K. B. Lyons, S. H. Liou, M. Hong, H. S. Chen, J. Kwo, and T.J.Negran, Phys. Rev. B36: 5592 (1987).CrossRefGoogle Scholar
  5. 5.
    see e.g. B. Batlogg et al., Phys. Rev. Lett. 58: 2333 (1987).CrossRefGoogle Scholar
  6. 6.
    e.g. H. You, R. K. McMullan, J. D. Axe, D. E. Cox, J. Z. Liu, G. W. Crabtree, and D. J. Lam, Sol. Stat. Commun. 64: 739 (1987).CrossRefGoogle Scholar
  7. 7.
    e.g. T. Siegrist, S. Sunshine, D. W. Murphy, R. J. Cava, and S. M. Zahurak, Phys. Rev. Lett. 35: 7137 (1987).Google Scholar
  8. 8.
    A. Reller, J. G. Bednorz, and K. A. Müller, Z. Phys. B67: 285 (1987).CrossRefGoogle Scholar
  9. 9.
    D. G. Hinks, L. Soderholm, D. W. Capone II, J. D. Jorgensen, I. K. Schuller, and J. D. Grace, Appl. Phys. Lett. 50: 1688 (1987).CrossRefGoogle Scholar
  10. 10.
    H. Rosen, E. M. Engler, T. C. Strand, V. Y. Lee, and D. Bethune, Phys. Rev. B36: 726 (1987).CrossRefGoogle Scholar
  11. 11.
    R. J. Hemley and H. K. Mao, Phys. Rev. Lett. 58: 2340 (1987).CrossRefGoogle Scholar
  12. 12.
    A. Yamanaka, F. Minami, K. Watanabe, K. Inoue, S. Takekawa, and N. Iyi, Jpn. J. Appl. Phys. 26: L1404 (1987).CrossRefGoogle Scholar
  13. 13.
    S. Takekawa and N. Iyi, Jpn. J. Appl. Phys. 26: L851 (1987).CrossRefGoogle Scholar
  14. 14.
    M. Cardona, L. Genzel, R. Liu, A. Wittlin, Hj. Mattausch, F. Garcia-Alvarado, and E. Garcia-Gonzalez, Sol.Stat.Commun. 64: 727 (1987).CrossRefGoogle Scholar
  15. 15.
    P. M. Krol, M. Stavola, W. Weber, L. F. Schneemeyer, S. V. Waszczak, S. M. Zahurak, and S. G. Kosinski, Phys. Rev. B36: 8325 (1987).CrossRefGoogle Scholar
  16. 16.
    R. Liu, C. Thomsen, W. Kress, M. Cardona, B. Gegenheimer, F. W. deWette, S. Prade, A. D. Kulkarni, and U. Schröder, preprint.Google Scholar
  17. 17.
    G. Leising, this volume.Google Scholar
  18. 18.
    E. Ortli, Ph. Lambin, J. L. Bredas, J. P. Vigneron, E. G. Derouane, A. A. Lucas, and J. M. Andre, Sol. Stat. Commun. 64, 313 (1987).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • P. Knoll
    • 1
  • W. Kiefer
    • 1
  1. 1.Institut für Experimentalphysik der Universität GrazGrazAustria

Personalised recommendations