Effect of Cu/Zn Substitution upon Superconductivity in YBa2(Cu1-xZnx)3O7-δ and La1.85Sr0.15Cu1-xZnxO4-δ

  • K. Remschnig
  • P. Rogl
  • E. Bauer
  • R. Eibler
  • G. Hilscher
  • H. Kirchmayr
  • N. Pillmayr

Abstract

The phenomenon of high-Tc superconductivity in the two families of ceramic Cu-oxides (LaBaCuO1, YBaCuO2) generated a wide spectrum of theoretical models which indicate that experimental data of these materials are of grime interest. According to recent bandstructure calculations3,4 the main contribution to the density of states at the Fermi energy comes from the antibonding combinations of the Cu-dx2-y2 -orbitals with the px- and py-orbitals of the neighbouring Oatoms. Therefore we substituted Cu by Zn whose ionic size and orbital structure is close to Cu and present results on the structural chemistry, electrical resistivity and heat capacity of well characterized samples.

Keywords

Electrical Resistivity Unit Cell Dimension Preferential Occupation Heavy Fermion System Valence Electron Concentration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. G. Bednorz, and K. A. Muller, Z. Phys. B 64: 189 (1986)CrossRefGoogle Scholar
  2. 2.
    M. K. Wu, J. R. Ashburn, C. J. Torng, P. H. Hor, R. L. Meng, L. Gao, Z. J. Huang, Y. Z. Wang, and C. W. Chu, Phys. Rev. Lett. 58: 908 (1987)CrossRefGoogle Scholar
  3. 3.
    L. F. Mattheiss, Phys. Rev. Lett. 58: 1028 (1987)CrossRefGoogle Scholar
  4. 4.
    W. M. Temmermann, Z. Szotek, P. J. Durham, G. M. Stocks, and P. A. Sterne, J. Phys. F 17: L319 (1987)CrossRefGoogle Scholar
  5. 5.
    J. B. Jorgensen, M. A. Beno, D. G. Hinks, L. Söderholm, K. V. Volin, R. L. Hittermann, J. D. Graze, I. K. Schuller, G. U. Segre, K. Zhang, and M. S. Kleefisch, Phys. Rev. B 36: 3608 (1987)CrossRefGoogle Scholar
  6. 6.
    J. M. Tarascon, W. R. McKinnon, L. H. Greene, G. W. Hull, and E. M. Vogel, Phys. Rev. B 36: 227 (1987)Google Scholar
  7. 7.
    M. Gurvitch, and A. T. Fiory, Phys. Rev. Lett. 59: 1337 (1987)CrossRefGoogle Scholar
  8. 8.
    G. Xiao, F. H. Streitz, A. Gavrin, Y. W. Du, and C. L. Chien, Phys. Rev. B 35: 8782 (1987)CrossRefGoogle Scholar
  9. 9.
    P. Mandai, A. Poddar, P. Choudhury, A. N. Das, and B. Ghosh, J. Phys. C 20: L953 (1987)CrossRefGoogle Scholar
  10. 10.
    S. B. Oseroff, D. C. Vier, J. F. Smyth, C. T. Sailing, S. Schultz, Y. Dalichaouch, B. W. Lee, M. B. Maple, Z. Fisk, J. D. Thompson, J. L. Smith, and E. Zirngiebl, Sol. State Commun. 64: 241 (1987)CrossRefGoogle Scholar
  11. 11.
    G. Hilscher, N. Pillmayr, E. Bauer, R. Eibler, K. Remschnig, and P. i gl, to be publishedGoogle Scholar
  12. 12.
    C. Ayache, B. Barbara, E. Bonjour, R. Calemczuk, M. Couach, J. H. Henry, and J. Rossat-Mignod, Sol. State Commun. 64: 247 (1987)CrossRefGoogle Scholar
  13. 13.
    A. Junod, A. Bezinge, D. Cattani, J. Cors, M. Decroux, 0. Fischer, P. Genoud, L. Hoffmann, J. L. Jorda, J. Muller, and E. Walker, Japan. J. Appl. Phys. 26: 1119 (1987)Google Scholar
  14. 14.
    L. Schultz, Siemens Forschungslabor Erlangen, FRGGoogle Scholar
  15. 15.
    I. Feiner, Racah Institute, Hebrew Univ. IsraelGoogle Scholar
  16. 16.
    S. X. Dou, N. Savvides, X. Y. Sun, A. J. Bourdillon, C. C. Sorrell, J. P. Zhou, and K. E. Easterling, J. Phys. C 20: L1003 (1987)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • K. Remschnig
    • 1
  • P. Rogl
    • 1
  • E. Bauer
    • 2
  • R. Eibler
    • 2
  • G. Hilscher
    • 2
  • H. Kirchmayr
    • 2
  • N. Pillmayr
    • 2
  1. 1.Institut f.Physikalische ChemieUniv. WienWienAustria
  2. 2.Institut f. ExperimentalphysikT.U.WienWien

Personalised recommendations