Trans-fatty Acids in Human Milk and Infant Plasma and Tissue

  • Berthold Koletzko
  • Maria Mrotzek
  • Hans Joachim Bremer


During the past decades, human dietary consumption of trans-isomers of unsaturated fatty acids (t-FAs) has increased considerably in industrialized countries. This increase is mainly due to the extensive use of the catalytic hydrogenation process of vegetable oils developed by Wilhelm Normann in 1902. Catalytic hydrogenation is performed in order to harden liquid oils and to improve their oxidative and flavour stability for their use in margarines, shortenings and a large variety of food products. Depending on the conditions of the process, usually positional and geometric isomerization of the naturally occurring cis-unsaturated FAs is favoured over saturation reactions; thus in margarines made with hydrogenated fats, 10–50% of all fatty acids can be t-FAs (1,2). The use of hydrogenated oils in visible fats and processed foods has become so widespread in North America and Western Europe, that it is almost impossible to avoid their consumption. They account for 44% of the average dietary fat intake in the USA (3). Dietary t-FAs are also found in body and milk fats of ruminants, as a result of microbial fat-hydrogenation in the animal’s forestomach. However, these products appear to contribute only a small proportion (5% in the USA) of total t-FA-consumption (4).


Human Milk Fatty Acid Isomer Adipose Tissue Lipid Plasma Lipid Fraction Sudanese Woman 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Heckers, F.W. Melcher, Trans-isomeric fatty acids present in West German margarines, shortenings, frying and cooking fats. Am J Clin Nutr 31: 1041 (1978).Google Scholar
  2. 2.
    J.L. Beare-Rogers, L.M. Gray, R. Hollywood, The linoleic and trans-fatty acids of margarines. Am J Clin Nutr 32: 1805 (1979).Google Scholar
  3. 3.
    Agricultural Statistics. US Govt Print Off Cat No AL 47, 977: 146 (1982).Google Scholar
  4. 4.
    J.B. Ohlrogge, Distribution in human tissues of fatty acid isomers from hydrogenated oils. In: Dietary fats and health, E.G. Perkins, W.J. Visek, eds., American Oil Chemists Society, Champaign, 359 (1983).Google Scholar
  5. 5.
    H.P. Kaufmann, F. Volbert, G. Mankel, Anwendung der IR-Spektrographie auf dem Fettgebiet V: Untersuchung von Milchfetten auf trans-ungesättigte Fettsäuren. Fette, Seifen, Anstrichmittel 63: 261 (1961).CrossRefGoogle Scholar
  6. 6.
    R. de Schrijver, O.S. Privett, Energetic efficiency and mitochondrial function function in rats fed trans fatty acids. J Nutr 144: 1183 (1984).Google Scholar
  7. 7.
    T. Ide, M. Sugano, Strain dependence of the metabolism of cis-and trans-isomers of 9-octadecenoic acid in perfused liver and cell-free preparation in rats. Biochim Biophys Acta 877: 104 (1986).CrossRefGoogle Scholar
  8. 8.
    F.A. Kummerow, Effects of isomeric fatty acids on animal tissue, lipid classes and atherosclerosis. In: Geometrical and positional fatty acid isomers, E.A. Emken, H.J. Dutton, eds., The American Oil Chemists Society, Champaign, 151 (1979).Google Scholar
  9. 9.
    H. Osmundsen, Peroxisomal ß-oxidation of long fatty acids: effects of high fat diets. Ann N Y Acad Sci 386: 13 (1982).CrossRefGoogle Scholar
  10. 10.
    R.R. Brenner, R.O. Peluffo, Regulation of unsaturated fatty acids biosynthesis. Biochim Biophys Acta 176: 471 (1969).CrossRefGoogle Scholar
  11. 11.
    J. Chern, J.E. Kinsella, The effects of unsaturated fatty acids on the synthesis of arachidonic acid in rat kidney cells. Biochim Biophvs Acta 750: 465 (1983).CrossRefGoogle Scholar
  12. 12.
    E.A. Emken, Nutrition and biochemistry of trans and positional fatty acid isomers in hydrogenated oils. Ann Rev Nutr 4: 339 (1984).CrossRefGoogle Scholar
  13. 13.
    M.M. Mahfouz, T.L. Smith, F.A. Kummerow, Effect of dietary fats on desaturase activities and the biosynthesis of fatty acids in rat-liver microsomes. Lipids 19: 214 (1984).CrossRefGoogle Scholar
  14. 14.
    B. Koletzko: Essentielle Fettsäuren: Bedeutung für Medizin und Ernährung. Akt Endokr Stoffw 7: 18 (1986).Google Scholar
  15. 15.
    J.E. Kinsella, D.H. Hwang, D.H. Yu et al., Prostaglandins and their precursors in tissues from rats fed on trans, trans-linoleate. Biochem J 184: 701 (1979).Google Scholar
  16. 16.
    D.H. Hwang, P. Chanmugam, R. Anding, Effects of dietary 9-trans, 12-trans linoleate on arachidonic acid metabolism in rat platelets. Lipids 17: 307 (1982).CrossRefGoogle Scholar
  17. 17.
    F.A. Kummerow, Nutritional effects of isomeric fats: Their possible influence on cell metabolism or cell structure. In: Dietary fats and health, E.G. Perkins, W.J. Visek, eds., American Oil Chemists Society, Champaign, 391 (1983).Google Scholar
  18. 18.
    W.J. Decker, W. Mertz, Effects of dietary elaidic acid on membrane function in rat mitochondria and erythrocytes. J. Nutr 91: 324 (1967).Google Scholar
  19. 19.
    A. Csordas, K. Schauenstein, Temperature-dependant specificity of cis-trans isomeric fatty acid interaction with the erythrocyte membrane. Biochim Biophvs Acta 856: 212 (1986).CrossRefGoogle Scholar
  20. 20.
    M.G. Enig, R.J. Munn, M. Keeney, Dietary fat and cancer trends — a critique. Fed Proc 37: 2215 (1978).Google Scholar
  21. 21.
    B. Koletzko, M. Gwosdz, H.J. Bremer, Trans isomeric fatty acids in human milk in West Germany. In: Composition and physiological properties of human milk, J. Schaub, ed., Elsevier Science Publishers, Amsterdam, 225 (1985).Google Scholar
  22. 22.
    B. Koletzko, M. Mrotzek, H.J. Bremer, Fat content and cis-and trans-isomeric fatty acids in human fore-and hindmilk, In: Human lactation 2, maternal and environmental factors, M. Hamosh, A.S. Goldman, eds., Plenum Press, New York, 589 (1986).Google Scholar
  23. 23.
    B. Koletzko, M. Mrotzek, H.J. Bremer, Fatty acid composition of mature human milk in Germany, submitted.Google Scholar
  24. 24.
    H. Heckers, F.W. Melcher, K. Dittmar, Zum täglichen Verzehr trans-isomerer Fettsäuren. Eine Kalkulation unter Zugrundelegung der Zusammensetzung handelsüblicher Fette and verschiedener menschlicher Depotfette. Fette. Seifen. Anstrichmittel 81: 217 (1979).CrossRefGoogle Scholar
  25. 25.
    C.R. Kepler, W.P. Tucker, S.B. Tove, Biohydrogenation of unsaturated fatty acids. J Biol Chem 245: 3612 (1970).Google Scholar
  26. 26.
    Abbas Orner El Karib, Eisa Osman El Amin, H.J. Bremer et al., Fatty acid composition of human milk in healthy Sudanese women, in preparation.Google Scholar
  27. 27.
    J.M. Aitchison, W.L. Dunkley, N.L. Canolty et al., Influence of diet on trans fatty acids in human milk. Am J Clin Nutr 30: 2006 (1977).Google Scholar
  28. 28.
    M.C. Craig-Schmidt, J.D. Weete, S.A. Faircloth et al., The effect of hydrogenated fat in the diet of nursing mothers on lipid composition and prostaglandin content of human milk. Am J Clin Nutr 39: 778 (1984).Google Scholar
  29. 29.
    J.E. Chappell, M.T. Clandinin, C. Kearney-Volpe, Trans fatty acids in human milk lipids: influence of maternal diet and weight loss. Am J Clin Nutr 42: 49 (1985).Google Scholar
  30. 30.
    M.F. Picciano, E.G. Perkins, Identification of trans-isomers of octadecenoic acid in human milk. Lipids 12: 407 (1977).CrossRefGoogle Scholar
  31. 31.
    R.M. Clark, A.M. Ferris, N. Key et al., The identity of the cholesteryl esters in human milk. Lipids 15: 972 (1980).CrossRefGoogle Scholar
  32. 32.
    K.E. Hundrieser, R.M. Clark, P.B. Brown, Distribution of trans-octadecenoic acid in the major glycerolipids of human milk. J Pediatr Gastroenterol Nutr 2: 635 (1983).CrossRefGoogle Scholar
  33. 33.
    D.A. Finley, B. Lönnerdal, K.G. Dewey et al., Breast milk composition: fat content and fatty acid composition in vegetarians and non-vegetarians. Am J Clin Nutr 41: 787 (1985).Google Scholar
  34. 34.
    J.L. Beare-Rogers, E.A. Nera, Some nutritional aspects of partially hydrogenated oils. J Am Oil Chem Soc 53: 467A (1976).CrossRefGoogle Scholar
  35. 35.
    G. Harzer, M. Haug, I. Dieterich et al., Changing patterns of human milk lipids in the course of lactation and during the day. Am J Clin Nutr 37: 612 (1983).Google Scholar
  36. 36.
    J.E. Kinsella, G. Bruckner, J. Mai et al., Metabolism of trans-fatty acids with emphasis on the effects of trans, trans octadecadienoate on lipid composition, essential fatty acid, and prostaglandins: an overview. Am J Clin Nutr 34: 2307 (1981).Google Scholar
  37. 37.
    M.M. van den Reek, M.C. Craig-Schmidt, J.D. Weete et al., Fat in the diets of adolescent girls with emphasis on isomeric fatty acids. Am J Clin Nutr 43: 530 (1986).Google Scholar
  38. 38.
    B. Koletzko, P.O. Abiodun, M.D. Laryea et al., Comparison of fatty acid composition of plasma lipid fractions in well-nourished Nigerian and German infants and toddlers. J Pediatr Gastroenterol Nutr 5:581 (1986).CrossRefGoogle Scholar
  39. 39.
    M.J. Sweeney, J.N. Etteldorf, L.J. Throop et al., Diet and fatty acid distribution in subcutaneous fat and in the choleste;rol-triglyceride fraction of serum of young infants. J Clin Invest 42: 1 (1963).CrossRefGoogle Scholar
  40. 40.
    D. Francis, N. Koster, F. Quaade et al., Fatty acid composition of brown and white fat in children and adults. Dan Med Bull 18: 143 (1971).Google Scholar
  41. 41.
    J.B. Ohlrogge, E.A. Emken, R.M. Gulley, Human tissue lipids: occurrence of fatty acid isomers from dietary hydrogenated oils. J Lipid Res 22: 955 (1981).Google Scholar
  42. 42.
    R.O. Adlof, E.M. Emken, Distribution of hexadecenoic, octadecenoic and octadecadienoic acid isomers in human tissue lipids. Lipids 21: 543 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Berthold Koletzko
    • 1
  • Maria Mrotzek
    • 1
  • Hans Joachim Bremer
    • 1
  1. 1.Universitäts-Kinderklinik DüsseldorfWest Germany

Personalised recommendations