Advertisement

Viral Contamination of Milk

  • Robert F. Pass

Abstract

There is a substantial body of evidence indicating that milk plays an important role in protecting the suckling animal from infections due to viruses and other agents. The presence of antibodies, phagocytes and immunocompetent cells in milk is often cited in support of both nursing and use of banked human milk for nourishment of hospitalized premature newborns. The fact that a variety of animal and human viruses can be transmitted from mother to offspring through milk is not widely recognized. The purpose of this report will be to review the range of viral agents that have been recovered from animal and human milk, to consider the potential importance of milk in transmission of these agents and to assess the implications of this information for nursing mothers and milk banks.

Keywords

Human Immunodeficiency Virus Human Milk Acquire Immune Deficiency Syndrome Bovine Leukemia Virus Rubella Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J.F. Ferrer, Bovine leukosis: natural transmission and principles of control, J. Am. Vet. Med. Assoc. 175:1281 (1979).Google Scholar
  2. 2.
    J.F. Ferrer and C.E. Piper, Role of colostrum and milk in the natural transmission of the bovine leukemia virus, Cancer Res. 41:4906 (1981).Google Scholar
  3. 3.
    R. Oliver, A. Cathcart, R. McNiven, W. Poole, and G. Robati, Infection of lambs with caprine arthritis encephalitis virus by feeding milk from infected goats, Vet. Rec. 116:83 (1985).CrossRefGoogle Scholar
  4. 4.
    D.W. Hardy, Jr., P.W. Hess, E.G. MacEwen, A.J. McClelland, E.E. Zuckerman, M. Essex, S.M. Cotter, and O. Jarrett, Biology of feline leukemia virus in the natural environment, Cancer Res. 36:582 (1976).Google Scholar
  5. 5.
    D. Hardy, The virology, immunology and epidemiology of the feline leukemia virus, in: “Feline Leukemia Virus,” W.D. Essex, Jr., A.J. McClelland, eds., Elsevier, New York (1980).Google Scholar
  6. 6.
    M. Pacitti, O. Jarrett, and D. Hay, Transmission of feline leukaemia virus in the milk of a non-viraemic cat, Vet. Rec. 118:381 (1986).CrossRefGoogle Scholar
  7. 7.
    A.B. Jenson, D.E. Groff, P.J. McConahey, and F.J. Dixon, Transmission of murine leukemia virus (Scripps) from parent to progeny mice as determined by p30 antigenemia, Cancer Res. 36:1228 (1976).Google Scholar
  8. 8.
    R. Jaenisch, Germ line integration and mendelian transmission of exogenous type C viruses, in: “Molecular Biology of RNA Tumor Viruses,” Academic Press, New York (1980).Google Scholar
  9. 9.
    M. Zijlstra, R.E.Y. DeGoede, H.J. Schoenmakers, A.H. Schinkel, W.G. Hesselink, J.L. Portis, and C.J.M. Melief, Naturally occurring leukemia viruses in H-2 congenic C57BL mice, III. characterization of C-type viruses isolated from lymphomas induced by milk transmission of B-ecotropic virus, Virology 125:47 (1983).CrossRefGoogle Scholar
  10. 10.
    J.J. Bittner, Some possible effects of nursing on the mammary gland tumor incidence in mice, Science 84:162 (1936).CrossRefGoogle Scholar
  11. 11.
    J. Hilgers and P. Bentvelzen, Interaction between viral and genetic factors in murine mammary cancer, in: “Advances in Cancer Research, Vol. 26,” Academic Press, New York (1978).Google Scholar
  12. 12.
    P. Hainaut, D. Vaira, C. Francois, C.M. Calberg-Bacq, and P.M. Osterrieth, Natural infection of Swiss mice with mouse mammary tumor virus (MMTV): viral expression in milk and transmission of infection, Arch. Virol. 83:195 (1985).CrossRefGoogle Scholar
  13. 13.
    H.L. Backrach, Foot-and-mouth disease, Ann. Rev. Microbiol. 22:201 (1968).CrossRefGoogle Scholar
  14. 14.
    H. Blackwell, P.D. McKercher, F.V. Kosikowski, L.E. Carmichael, and R.C. Gorewit, Physicochemical transformation of milk components and release of foot-and-mouth disease virus, J. Dairy Res. 50:17 (1983).CrossRefGoogle Scholar
  15. 15.
    P. Sangiorgio and M.C. Weissenbacher, Congenital and perinatal infection with Junin virus in guinea pigs, J. Med. Virol. 11:161 (1983).CrossRefGoogle Scholar
  16. 16.
    J. Nosek, O. Kozuch, E. Ernek, and M. Lichard, The importance of goats in the maintenance of tick-borne encephalitis virus in nature, Acta. Virol. (Praha) 11:470 (1967).Google Scholar
  17. 17.
    H.W. Reid, D. Buxton, I. Pow, and J. Finlayson, Transmission of louping-ill virus in goat milk, Vet. Rec. 114:163 (1984).CrossRefGoogle Scholar
  18. 18.
    J. Kemeny and R.D. Woods, Quantitative transmissible gastroenteritis virus shedding patterns in lactating sows, Am. J. Vet. Res. 38:307 (1977).Google Scholar
  19. 19.
    L.J. Saif and E.H. Bohj, Passive immunity to transmissible gastroenteritis virus: intramammary viral inoculation of sows, Ann. NY Acad. Sci. 409:708 (1983).CrossRefGoogle Scholar
  20. 20.
    K. Hayes, D.M. Danks, H. Givas, and I. Jack, Cytomegalovirus in human milk, N. Engl. J. Med. 287:177 (1972).CrossRefGoogle Scholar
  21. 21.
    S. Stagno, D.W. Reynolds, R.F. Pass, and C.A. Alford, Breast milk and the risk of cytomegalovirus infection, N. Engl. J. Med. 302:1073 (1980).CrossRefGoogle Scholar
  22. 22.
    M. Dworsky, M. Yow, S. Stagno, R.F. Pass, and C.A. Alford, Cytomegalovirus infection of breast milk and transmission in infancy, Pediatrics 72:295 (1983).Google Scholar
  23. 23.
    K. Ahlfors and S.A. Ivarsson, Cytomegalovirus in breast milk of Swedish milk donors, Scand. J. Infect. Dis. 17:11 (1985).CrossRefGoogle Scholar
  24. 24.
    M. Dunkel, R.R. Schmidt, and D.M. O’Connor, Neonatal herpes simplex infection possibly acquired via maternal breast milk, Pediatrics 63:250 (1979).Google Scholar
  25. 25.
    E. Buimovici-Klein, R.J. Hite, T. Byrne, and L.Z. Cooper, Isolation of rubella virus in milk after postpartum immunization, J. Pediatr. 91:939 (1977).CrossRefGoogle Scholar
  26. 26.
    E.B. Klein, T. Byrne, and L.Z. Cooper, Neonatal rubella in a breast-fed infant after postpartum maternal infection, J. Pediatr. 97:774 (1980).CrossRefGoogle Scholar
  27. 27.
    G.A. Losonsky, J.M. Fishaut, J. Strussenberg, and P.L. Ogra, Effect of immunization against rubella on lactation products. I. development and characterization of specific immunologic reactivity in breast milk, J. Infect. Dis. 145:654 (1982).CrossRefGoogle Scholar
  28. 28.
    G.A. Losonsky, J.M. Fishaut, J. Strussenberg, and P.L. Ogra, Effect of immunization against rubella on lactation products. II. Maternal-neonatal interactions, J. Infect. Dis. 145:661 (1982).CrossRefGoogle Scholar
  29. 29.
    C.C. Linnemann, Jr. and S. Goldberg, HBAg in breast milk, Lancet 2:155 (1974).CrossRefGoogle Scholar
  30. 30.
    E.H. Boxall, T.H. Flewett, P.S. Pane, C.H. Cameron, F.O. MacCallum, and T.W. Lee, Hepatitis-B surface antigen in breast milk, Lancet 2:1007 (1974).CrossRefGoogle Scholar
  31. 31.
    A.K.Y. Lee, H.M.H. Ip, and V.C.W. Wong, Mechanisms of maternal-fetal transmission of hepatitis B virus, J. Infect. Dis. 138:668 (1978).CrossRefGoogle Scholar
  32. 32.
    K. Kinoshita, S. Hino, T. Amagasaki, S. Ikeda, Y. Yamada, J. Suzuyama, S. Momita, K. Toriya, S. Kamihara, and M. Ichimaru, Pemonstration of adult T-cell leukemia virus antigen in milk from three seropositive mothers, Gann. 75:103 (1984).Google Scholar
  33. 33.
    K. Kinoshita, K. Yamanouchi, S. Ikeda, S. Momita, T. Amagasaki, H. Soda, M. Ichimaru, R. Moriuchi, S. Katamine, T. Miyamoto, and S. Hino, Oral infection of a common marmoset with human T-cell leukemia virus type-I (HTLV-I) by inoculating fresh human milk of HTLV-I carrier mothers, Jpn. J. Cancer Res. 76:1147 (1985).Google Scholar
  34. 34.
    J.B. Ziegler, R.O. Johnson, P.A. Cooper, and J. Gold, Postnatal transmission of AIPS-associated retrovirus from mother to infant, Lancet 1:896 (1985).CrossRefGoogle Scholar
  35. 35.
    R.F. Pass, Transmission of viruses through human milk, in: “Role of Human Milk in Infant Nutrition and Health,” L.K. Pickering, F.H. Morriss, eds., Charles C. Thomas Publishers, Springfield (1986).Google Scholar
  36. 36.
    J.Z. Sullivan-Bolyai, K.H. Fife, R.F. Jacobs, Z. Miller, and L. Corey, Pisseminated neonatal herpes simplex virus type 1 from a maternal breast lesion, Pediatrics 71:455 (1983).Google Scholar
  37. 37.
    R.P. Beasley, C.E. Stevens, I-S Shiao, and H-C Meng, Evidence against breast feeding as a mechanism for vertical transmission of hepatitis B, Lancet 2:740 (1975).CrossRefGoogle Scholar
  38. 38.
    Committee on Fetus and Newborn and Committee on Infectious Piseases, Perinatal herpes simplex virus infections, Pediatrics 66:147 (1980).Google Scholar
  39. 39.
    A.S. Yeager, F.C. Grumet, E.B. Hafleigh, A.M. Arvin, J.S. Bradley, and C.G. Prober, Prevention of transfusion-acquired cytomegalovirus infection in newborn infants, J. Pediatr. 98:281 (1981).CrossRefGoogle Scholar
  40. 40.
    J.K. Welsch, M. Arsenakis, R.J. Coelen, and J.T. May, Effect of antiviral lipids, heat, and freezing on the activity of viruses in human milk, J. Infect. Dis. 140:322 (1979).CrossRefGoogle Scholar
  41. 41.
    M. Pworsky, S. Stagno, R.F. Pass, G. Cassady, and C.A. Alford, Persistence of cytomegalovirus in human milk after storage, J. Pediatr. 101:440 (1982).CrossRefGoogle Scholar
  42. 42.
    H. Friss and H.K. Andersen, Rate of inactivation of cytomegalovirus in raw banked milk during storage at-20°C and pasteurisation, Br. Med. J. 285:1604 (1982).CrossRefGoogle Scholar
  43. 43.
    R.M. Goldblum, C.W. Pill, T.B. Albrecht, E.S. Alford, C. Garza, and A.S. Goldman, Rapid high-temperature treatment of human milk, J. Pediatr. 104:380 (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Robert F. Pass
    • 1
  1. 1.Department of PediatricsUniversity of Alabama at BirminghamBirminghamUSA

Personalised recommendations