Carnitine in Relation to Feeding Infants

  • Peggy R. Borum
  • Janet K. Baltzell
  • Alesia Patera


The importance of carnitine in facilitating long chain fatty acid oxidation and the importance of long chain fatty acid oxidation in energy metabolism of the infant are both well documented (1). Carnitine is therefore an important nutrient for the infant. However, the physiological processes in infant metabolism facilitated by carnitine may also include oxidation of medium chain fatty acids, catabolism of branched chain amino acids, thermogenesis, ketogenesis, utilization of ketone bodies, gluconeogenesis, prevention of hyperammonemia, prevention of accumulation of toxic concentrations of acyl CoA, and regeneration of free coenzyme A (2,3). The mechanism of carnitine action in many of these physiological processes remains to be elucidated.


Cord Blood Human Milk Total Parenteral Nutrition Infant Formula Fullterm Infant 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.R. Borum. Carnitine. in: “Annual Review of Nutrition,” William J. Darby, Harry P. Broquist and Robert E. Olson eds., Annuals Reviews, Palo Alto, 3:233–259 (1983).Google Scholar
  2. 2.
    P.R. Borum. Disturbances in Carnitine Metabolism. Biocbgmical Society Transactions 14:681–683 (1986).Google Scholar
  3. 3.
    P.R. Borum. Carnitine function, in: “Clinical Aspects of Human Carnitine Deficiency,” Peggy R. Borum ed., Pergamon Press, New York, pp. 25–36 (1986).Google Scholar
  4. 4.
    P.R. Borum. Possible Carnitine Requirement of the Newborn and the Effect of Genetic Disease on the Carnitine Requirement. Nutrition Reviews 39:385–390 (1981).CrossRefGoogle Scholar
  5. 5.
    C.J. Rebouche. Is Carnitine an Essential Nutrient for Humans? J. Nutr. 116:704–706 (1986).Google Scholar
  6. 6.
    P.R. Borum and S.G. Bennett. Carnitine as An Essential Nutrient. J. Amer. College Nutr. 5:177–182 (1986).Google Scholar
  7. 7.
    P.R. Borum, J.J. Chapman, K. Portier, M.J. Macey and J. Keegan. Carnitine Concentration of Breast Milk During the First 16 Weeks of Lactation. Fed. Proc. 45:364 (1986).Google Scholar
  8. 8.
    C. Robles-Valdes, J.D. McGarry and D.W. Foster. Maternal-Fetal Carnitine Relationships and Neonatal Ketosis in the Rat. J. Biol. Chem. 251:6007–6012 (1976).Google Scholar
  9. 9.
    P.R. Borum, C.M. York and H.P. Broquist. Carnitine Content of Liquid Formulas and Special Diets. Am. J. Clin. Nutr. 32:2272–2276 (1979).Google Scholar
  10. 10.
    J.P. Shenai, P.R. Borum, P. Mohan and S.C. DonLevy. Carnitine Status at Birth of Newborn Infants of Varying Gestation. Pediatr. Res. 17:579–582 (1983).CrossRefGoogle Scholar
  11. 11.
    A. Patera, M. Neylan and P.R. Borum. Reference Values of Blood Carnitine Parameters for Neonates. Fed. Proc. 45:615 (1986).Google Scholar
  12. 12.
    J.P. Riddell, M. Behnke, J. Neu, T.G. Baumgartner, M.T. Gersovitz and P.R. Borum. L-Carnitine Supplementation in Very Low Birth Weight Premature Infants Receiving Total Parenteral Nutrition, in: “Clinical Aspects of Human Carnitine Deficiency,” P.R. Borum, ed., Pergamon Press, NY, pp. 161 (1986).Google Scholar
  13. 13.
    P.R. Borum and R.A. Helms. Effect of Oral Carnitine Administration on Blood Carnitine Parameters of Infants Maintained on TPN. Amer. J. of Clin. Nutr. 43:680 (1986).Google Scholar
  14. 14.
    P.R. Borum and S.G. Bennett. Assessment of Carnitine Status Using Blood Parameters. Fed. Proc. 44:2063 (1985).Google Scholar
  15. 15.
    K.T.N. Yue and I.B. Irving. Fite of Tritium-labeled Carnitine Administered to Dogs and Rats. Am. J. of Physiology 202:122–128 (1962).Google Scholar
  16. 16.
    C.J. Rebouche and A.G. Engel. Kinetic Compartmental Analysis of Carnitine Metabolism in the Dog. Archives of Biochem. and Biophysics 220:60–70 (1983).CrossRefGoogle Scholar
  17. 17.
    D.E. Brooks and J.A. McIntosh. Turnover of Carnitine by Rat Tissues. Biochem. J. 148:439–445 (1975).Google Scholar
  18. 18.
    G. Cederblad and S. Lindstedt. Metabolism of Labeled Carnitine in the Rat. Archives of Biochem. and Biophysics 175:173–180 (1976).CrossRefGoogle Scholar
  19. 19.
    P.R. Borum, T.O. Rumley and E. Taggart. Caution Required in Clinical Use of Plasma Carnitine Concentration for Assessment of Carnitine Status. Eighth Congress of the European Society of Parenteral and Enterai Nutrition Book of Abstracts, pp. 76 (1986).Google Scholar
  20. 20.
    J.E. Cooper. The Use of the Pig as an Animal Model to Study Problems Associated With Low Birthweight. Lab. Animals 9:329–336 (1975).CrossRefGoogle Scholar
  21. 21.
    W.J. Dodds. The Pig Model for Biomedical Research. Fed. Proc. 41:247–256 (1982).Google Scholar
  22. 22.
    J.K. Baltzell, F.W. Bazer, S.G. Miguel and P.R. Borum. The Neonatal Piglet as an Animal Model for Carnitine Supplementation of Human Neonates. Fed. Proc. 45:615 (1986).Google Scholar
  23. 23.
    P.R. Borum, J.K. Baltzell and A. Patera. Care of Colostrum Deprived Neonatal Piglets for Nutritional Investigations. J. Nutr. 116:000 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Peggy R. Borum
    • 1
  • Janet K. Baltzell
    • 1
  • Alesia Patera
    • 1
  1. 1.Food Science and Human Nutrition DepartmentUniversity of FloridaGainesvilleUSA

Personalised recommendations