Advertisement

Gastric Lipolysis and Fatty Acid Utilization in Preterm Infants

  • Joel Bitman
  • Teresa H. Liao
  • Margit Hamosh
  • N. R. Mehta
  • R. J. Buczek
  • D. L. Wood
  • L. J. Grylack
  • P. Hamosh

Abstract

Development of the newborn infant is greatly dependent upon the capability to utilize dietary fat. In human milk and infant formulas, fats provide 50% of the calories. Fat utilization is dependent upon 1) digestion of the dietary lipids by lipases present in the gastrointestinal tract, and 2) absorption of the hydrolyzed lipid products facilitated by bile salts (1). In the newborn, and especially in the premature infant, because of insufficient maturation, pancreatic lipase activity and bile salt levels are low (2). Consequently intragastric lipolysis by lingual and gastric (3) lipases may play an important role in fat digestion. This is especially critical for the premature or low-birth-weight infant.

Keywords

Lipase Activity Gastric Aspirate Exocrine Pancreatic Insufficiency Pancreatic Lipase Activity Lingual Lipase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Watkins JB. Mechanism of fat absorption and the development of gastrointestinal function. Pediatr Clin N Am 22:721–730 (1975).Google Scholar
  2. 2.
    Hamosh M. A Review, Fat digestion in the newborn: role of lingual lipase and preduodenal digestion. Pediatr Res 13:615–622 (1975).CrossRefGoogle Scholar
  3. 3.
    DeNigris SJ, Hamosh M, Kasbekar DK, Fink CK, Lee TC and Hamosh P. Human gastric lipases: secretion from dispersed gastric glands. Biochim Biophys Acta 836:67–72 (1985).CrossRefGoogle Scholar
  4. 4.
    Roy CC, Ste-Marie M, Chartrand L, Weber A, Bard H, Doray B. Correction of the malabsorption of the preterm infants with a medium-chain triglyceride formula. J Pediatr 86:446–450 (1975).CrossRefGoogle Scholar
  5. 5.
    Tantibhendyangkul P, Hashim SA. Medium-chain triglyceride feeding in premature infants. Effects on fat and nitrogen absorption. Pediatrics 55:359–370 (1975).Google Scholar
  6. 6.
    Shenai PJ, Reynolds JW, Babson SG. Nutritional balance studies in very-low-birth-weight infants: Enhanced nutrient retention rates by an experimental formula. Pediatrics 66:233–238 (1980).Google Scholar
  7. 7.
    Okamoto E, Muttart CR, Zucker CL, Heird WC. Use of medium-chain triglycerides in feeding the low birth weight infant. Am J Dis Child 136:428–431 (1982).Google Scholar
  8. 8.
    Dubowitz LM, Dubowitz V, Goldberg C. Clinical assessment of gestational age in the newborn infant. J Pediatr 77:1–10 (1970).CrossRefGoogle Scholar
  9. 9.
    Alemi B, Hamosh M, Scanlon JW, Salzman-Mann C, Hamosh P. Fat digestion in very low birth weight infants: effect of addition of human milk to LBW formula. Pediatrics 68:484–489 (1981).Google Scholar
  10. 10.
    Liao TH, Hamosh P, Hamosh M. Fat digestion by lingual lipase: Mechanism of lipolysis in the stomach and upper small intestine. Pediatr Res 18:402–409 (1984).CrossRefGoogle Scholar
  11. 11.
    Folch J, Lees M, Sloane-Stanley GH. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509 (1957).Google Scholar
  12. 12.
    Liao TH, Hamosh P, Hamosh M. Gastric lipolysis in the developing rat: Ontogeny of the lipases active in the stomach. Biochim Biophys Acta 754:1–9 (1983).CrossRefGoogle Scholar
  13. 13.
    Bitman J, Wood DL, Hamosh M, Hamosh P, Mehta NR. Comparison of the lipid composition of breast milk from mothers of term and preterm infants. Am J Clin Nutr 38:300–12 (1983).Google Scholar
  14. 14.
    Jeejeebhoy KN, Ahmad S, Kozak G. Determination of fecal fats containing both medium and long chain triglycerides and fatty acids. Clin Biochem 3:157–163 (1970).Google Scholar
  15. 15.
    Chew V. Comparisons among treatment means in an analysis of variance. USDA Agricultural Research Publication. ARS/H/6, Beltsville, MD (1977).Google Scholar
  16. 16.
    Bitman J, Wood DL, Liao TH, Fink CS, Hamosh P, Hamosh M. Gastric lipolysis of milk lipids in suckling rats. Biochim Biophys Acta 834:58–64 (1985).CrossRefGoogle Scholar
  17. 17.
    Carey MC, Small DM, Bliss CM. Lipid digestion and absorption. Ann Rev Physiol 45:651–677 (1983).CrossRefGoogle Scholar
  18. 18.
    Abrams CK, Hamosh M, Hubbard VS, Dutta SK, Hamosh P. Lingual lipase in cystic fibrosis. Quantitation of enzyme activity in the upper small intestine of patients with exocrine pancreatic insufficiency. J Clin Invest 73:374–382 (1984).CrossRefGoogle Scholar
  19. 19.
    Abrams CK, Hamosh M, Dutta SK, Hubbard VS, Hamosh P. The role of non-pancreatic lipolytic activity in exocrine pancreatic insufficiency. Gastroenterology 1987; In Press.Google Scholar
  20. 20.
    Huston RK, Reynolds JW, Jensen C, Buist NRM. Nutrient and mineral retention and vitamin D absorption in low birth weight infants: effect of medium-chain triglyceride. Pediatrics 72:44–48 (1983).Google Scholar
  21. 21.
    Whyte RK, Campbell D, Stanhope R, Bayley HS, Sinclair JC. Energy balance in low birth weight infants fed formula of high or low medium-chain triglyceride content. J Pediatr 108:946–71 (1986).Google Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Joel Bitman
    • 1
    • 2
  • Teresa H. Liao
    • 1
    • 2
  • Margit Hamosh
    • 1
    • 2
  • N. R. Mehta
    • 1
    • 2
  • R. J. Buczek
    • 1
    • 2
  • D. L. Wood
    • 1
    • 2
  • L. J. Grylack
    • 1
    • 2
  • P. Hamosh
    • 1
    • 2
  1. 1.U. S. Department of AgricultureAgricultural Research ServiceBeltsvilleUSA
  2. 2.Georgetown University Medical CenterUSA

Personalised recommendations