Advertisement

Hormones and Clinical Anxiety An Imbalanced Neuromodulation of Attention

  • Michael J. Kelley
Part of the Perspectives on Individual Differences book series (PIDF)

Abstract

In this chapter, a model of neuroses will be developed that suggests that clinical anxiety is an outcome of an interaction between associative conditioning and individual differences in the functioning of the neuroendocrine system. The model takes as an assumption that there is a synergism between these two factors and that each alone is largely insufficient to produce clinical neuroses. More broadly, this interaction can be conveyed by the following equation:
$$ neuroses = conditioning \times neurohormones $$

Keywords

Conditioned Stimulus Anorexia Nervosa Opioid Receptor Locus Coeruleus Congenital Adrenal Hyperplasia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlers, S. T., & Richardson, R. (1985). Administration of dexamethasone prior to training blocks ACTH-induced recovery of an extinguished avoidance response. Behavioral Neuroscience, 99, 760–764.PubMedCrossRefGoogle Scholar
  2. Anderson, D. C., Crowell, C., Koehn, D., & Lupo, J. V. (1976). Different intensities of unsignaled inescapable shock treatments as determinants of non-shock-motivated open field behavior: A resolution of disparate results. Physiology and Behavior, 17, 391–394.PubMedCrossRefGoogle Scholar
  3. Anderson, L. T., David, R., Bonnet, K., & Dancis, J. (1979). Passive avoidance learning in Lesch-Nyhan disease: Effect of l-desaminio-8-arginine-vasopressin. Life Sciences, 24, 905–910.PubMedCrossRefGoogle Scholar
  4. Armario, A., Castellanos, J. M., & Balasch, J. (1984). Effect of crowding on emotional reactivity in male rats. Neuroendocrinology, 39, 330–333.PubMedCrossRefGoogle Scholar
  5. Arnsten, A. F. T., Neville, H. J., Hillyard, S. A., Janowsky, D. S., & Segal, D. S. (1984). Naloxone increases electrophysiological measures of selective information processing in humans. Journal of Neuroscience, 4, 2912–2919.PubMedGoogle Scholar
  6. Aston-Jones, G. (1885). The locus coeruleus: Behavioral functions of locus coeruleus derived from celluar attributes. Physiological Psychology, 13, 118–126.Google Scholar
  7. Ballenger, J. C., Post, R. M., Jimerson, D. C., Lake, C. R., & Zuckerman, M. (1984). Neurobiological correlates of depression and anxiety in normal individuals. In R. M. Post & J. C. Ballenger (Eds.), Neurobiology of mood disorders (pp. 481–501). Baltimore, MD: Williams & Wilkins.Google Scholar
  8. Bechara, A., & van der Kooy, D. (1985). Opposite motivational effects of endogenous opioids in brain and periphery. Nature, 314, 533–534.PubMedCrossRefGoogle Scholar
  9. Beckwith, B. E., & Sandman, C. A. (1978). Behavioral influences of neuropeptides ACTH and MSH: A methodological review. Neuroscience and Behavioral Reviews, 2, 311–338.CrossRefGoogle Scholar
  10. Beckwith, B. E., & Sandman, C. A. (1982). Central nervous system and peripheral effects of ACTH, MSH, and related peptides. Peptides, 3, 411–420.PubMedCrossRefGoogle Scholar
  11. Berettini, W. H., Nurnberger, J. I., Jr., Chan, J. S. D., Chrousos, G. P., Gaspar, L., Gold, P. W., Seidah, N. G., Simmons-Ailing, S., Goldin, L. R., Chretien, M., & Gershon, E. S. (1985). Pro-opiomelan-ocortin-related peptides in cerebrospinal fluid: A study of manic-depressive disorder. Psychiatry Research, 16, 287–302.CrossRefGoogle Scholar
  12. Bertolini, A., & Gessa, G. L. (1981). Behavioral effects of ACTH and MSH peptides. Journal of Endocrinological Investigation, 4, 241–251.PubMedGoogle Scholar
  13. Bertoloni, A., Fratta, W., Gessa, G. L., Montaldo, S., & Serra, G. (1984). Penile erection during morphine withdrawal: Possible role of ACTH-MSH peptides. In E. E. Muller & A. R. Genazzi (Eds.), Central and peripheral endorphins: Basic and clinical aspects. New York: Raven Press.Google Scholar
  14. Bertolini, A., Vergoni, A. V., Poggioli, R., & Gessa, G. L. (1986). Morphine and B-endorphin antagonize posture and locomotor disorders induced by the injection of ACTH 1–24 in the rat locus coeruleus. Life Sciences, 38, 373–377.PubMedCrossRefGoogle Scholar
  15. Bohus, B., de Kloet, E. R., & Veldius, H. D. (1982). Adrenal steroids and behavioral adaptation: Relationship to brain corticoid receptors. In D. Pfaff & D. Ganten (Eds.), Current topics in neuroendocrinology, Vol. 2 (pp. 107–151). Berlin: Springer-Verlag.Google Scholar
  16. Bolles, R. C. (1970). Species-specific defensive reactions and avoidance learning. Psychological Review, 77, 32–48.CrossRefGoogle Scholar
  17. Born, J., Fehm-Wolfsdorf, G., Schiebe, M., Rockstroh, B., Fehm, H. L., & Voigt, K. H. (1984) Dishabituating effects of an ACTH 4–9 analog in a vigilance task. Pharmacology Biochemistry and Behavior, 21, 513–519.CrossRefGoogle Scholar
  18. Breggin, P. R. (1964). The psychophysiology of anxiety. The Journal of Nervous and Mental Disease, 139, 558–568.PubMedCrossRefGoogle Scholar
  19. Britton, D. R., Varela, M., Garcia, A., & Rosenthal, M. (1986). Dexamethasone suppresses pituitary-adrenal but not behavioral effects of centrally administered CRF. Life Sciences, 38, 211–216.PubMedCrossRefGoogle Scholar
  20. Buckingham, J. C., & Cooper, T. A. (1984). Differences in hypothalamo-pituitary-adrenocortical activity in the rat after acute and prolonged treatment with morphine. Neuroendocrinology, 38, 411–417.PubMedCrossRefGoogle Scholar
  21. Buijs, R. M. (1983). Vasopressin and oxytocin—Their role in neurotransmission. Pharmacology and Therapeutics, 22, 127–141.PubMedCrossRefGoogle Scholar
  22. Burbach, J. P. H., Bohus, B., Kovacs, G. L., van Nispen, J. W. Greven, H. M., & de Wied, D. (1983). Oxytocin is a precursor of behaviorally active neuropeptides. European Journal of Pharmacology, 94, 125–131.PubMedCrossRefGoogle Scholar
  23. Burbach, J. P. H., Kovacs, G. L., & de Wied, D. (1983). A major metabolite of arginine vasopressin in the brain is a highly potent neuropeptide. Science, 221, 1310–1312.PubMedCrossRefGoogle Scholar
  24. Cannon, W. B. (1915). Bodily changes in pain, hunger, fear and rage (2nd ed.). New York: Appleton.Google Scholar
  25. Carpenter, W. T., & Gruen, P. H. (1982). Cortisol’s effect on human mental functioning. Journal of Clinical Psychopharmacology, 2, 91–101.PubMedCrossRefGoogle Scholar
  26. Charney, D. S., & Redmond, D. E., Jr., (1983). Neurobiological mechanisms in human anxiety. Neuropharmacology, 22, 1531–1536.PubMedCrossRefGoogle Scholar
  27. Cohen, M. R., Pickar, D., Extein, I., Gold, M. S., & Sweeney, D. R. (1984). Plasma Cortisol and B- endorphin immunoreactivity in major and nonmajor depression. American Journal of Psychiatry, 141, 628–632.PubMedGoogle Scholar
  28. Cohen, M. R., Cohen, R. M., Pickar, D., Sunderland, T., Mueller, E. A., III, & Murphy, D. L. (1984). High-dose Naloxone in depression. Biological Psychiatry, 19, 825–832.PubMedGoogle Scholar
  29. Concannon, J. T., Riccio, D. C., Maloney, R., & McKelvey, J., (1980). ACTH mediation of learned fear: Blockade by naloxone and naltrexone. Physiology and Behavior, 25, 977–979.PubMedCrossRefGoogle Scholar
  30. Concannon, J. T., Riccio, D. C., & McKelvey, J. (1980). Pavlovian conditioning of fear based upon hormonal mediation of prior aversive experience. Animal Learning and Behavior, 8, 75–80.CrossRefGoogle Scholar
  31. Cook, L., Davidson, A., Davis, D. J., & Kelleher, R. T. (1960). Epinephrine, norepinephine, and acetylcholine as stimuli for avoidance behavior. Science, 131, 990–991.PubMedCrossRefGoogle Scholar
  32. Cronin, G. M., Wiepkema, P. R., & van Ree, J. M. (1986). Endorphins implicated in stereotypies of tethered sows. Experienlia, 42, 198–199.CrossRefGoogle Scholar
  33. Datta, P. C., & King, M. G. (1982). Alpha-melanocyte-stimulating hormone and behavior. Neuroscience and Biobehavioral Review, 6, 297–310.CrossRefGoogle Scholar
  34. De Vito, W. J., & Brush, F. R. (1984). Effect of ACTH and vasopressin on extinction: Evidence for opiate mediation. Behavioral Neuroscience, 98, 59–71.CrossRefGoogle Scholar
  35. de Wied, D. (1984). CNS effects of oxytocin and related peptides. In P. Paccheri, L. Zichella and P. Falaschi (Eds.), Endorphins, neuroregulalors and behavior in human reproduction (pp. 4–15). Princeton: NJ: Excepta Medica.Google Scholar
  36. de Wied, D., & Jolies, J. (1982). Neuropeptides derived from pro-opiocortin: Behavioral, psychological and neuro-chemical effects. Physiological Reviews, 62, 976–1067.PubMedGoogle Scholar
  37. Dolan, R. J., Calloway, S. P., Fonagy, P., De Souza, F. V. A., & Wakling, A. (1985). Life events, depression and the hypothalamic-pituitary-adrenal axis. British Journal of Psychiatry, 147, 429–433.PubMedCrossRefGoogle Scholar
  38. Ehrensing, R. H., Micheli, G. F., & Baker, R. P. (1982). Vasopressin’s effects on acquisition and extinction of conditioned avoidance response to smoking. Peptides, 3, 527–530.PubMedCrossRefGoogle Scholar
  39. Eich, J. E. (1980). The cue-dependent nature of state-dependent retrieval. Memory and Cognition, 8, 157–173.CrossRefGoogle Scholar
  40. Ettenburg, A., van der Kooy, D., Le Moal, M., Koob, J., & Bloom, F. (1983). Can aversive properties of (peripherally-injected) vasopressin account for its putative role in memory? Behavioural Brain Research, 7, 331–350.CrossRefGoogle Scholar
  41. Eysenck, H. J. (1979). The conditioning model of neuroses. Behavior and Brain Sciences, 2, 155–199.CrossRefGoogle Scholar
  42. Eysenck, H. J., & Eysenck, M. W. (1985). Personality and individual differences. New York: Plenum Press.CrossRefGoogle Scholar
  43. Eysenck, H. J., & Kelley, M.J. (1986). The interaction of neurohormones with Pavlovian A and Pavlovian B conditioning in the causation of neuroses, extinction and incubation of anxiety. In G. Davies (Ed.), Human conditioning. London: Wiley.Google Scholar
  44. Fanslow, M. S. (1985). Odors released by stressed rats produce opioid analgesia in unstressed rats.Behavioral Neuroscience, 99, 589–592.CrossRefGoogle Scholar
  45. Foa, E. B., Stekette, G. S., & Ozarow, B.J. (1985). Behavior therapy with obsessive-compulsives: From theory to treatment. In M. Mavissakalian, S. M. Turner, & L. Michaelson (Eds.), Obsessive-compulsive disorder. New York: Plenum Press.Google Scholar
  46. Fehm, H. L., Klien, E., Holl, R., & Voigt, K. H. (1984). Evidence for extra-pituitary mechanisms mediating the morning peak of plasma Cortisol in man. Journal of Clinical Endocrinology and Metabolism, 58, 410–414.PubMedCrossRefGoogle Scholar
  47. Fehm, H. L., Holl, R., Steiner, K., Klein, E., & Voigt, K. H. (1984). Evidence for ACTH-unrelated mechanisms in the regulation of Cortisol secretion in man. Klinische Wochenschrift, 62, 19–24.PubMedCrossRefGoogle Scholar
  48. Frederiksen, S. O., d’Elia, G., & Bengtsson, B.-O. (1985). ACTH 4–9 analogue (ORG 2766) in depressed and elderly patients. Acta Psychiatrica Scandanavica, 72, 349–357.CrossRefGoogle Scholar
  49. Fredrikson, M., Sundin, O., & Frankenhaeuser, M. (1985). Cortisol excretion during defensive reaction in humans. Psychosomatic Medicine, 47, 313–317.PubMedGoogle Scholar
  50. Gaillard, A. W. K. (1981). ACTH analogs and human performance. In J. L. Martinez Jr., R. A. Jensen, R. B. Messing, H. Righter, & J. L. McGuagh (Eds.), Endogenous peptides and learning and memory processes (pp. 181–196). New York: Academic Press.Google Scholar
  51. Gjerris, A., Hammer, M., Vendsborg, P., Christensen, N.J., & Rafaelsen, O.J. (1985). Cerebrospinal fluid vasopressin—Changes in depression. British Journal of Psychiatry, 147, 696–701.PubMedCrossRefGoogle Scholar
  52. Gold, P. W., Ballenger, J. C., Robertson, G. L., Weingartner, H., Rubinow, D. R., Hoban, M. C., Goodwin, F. K., & Post, R. N. (1984). Vasopressin in affective illness: direct measurement, clinical trials and response to hypertonic saline. In R. M. Post & J. C. Ballenger (Eds.), Neurobiology of mood disorders (pp. 323–339). London: Williams & Wilkins.Google Scholar
  53. Gold, P. W., Chrousos, G., Kellner, C., Post, R., Roy, A., Augerinos, P., Schulte, H., Oldfield, E., & Loriaux, D. L. (1984). Psychiatric and clinical studies of corticotropin releasing factor. The American Journal of Psychiatry, 141, 619–627.PubMedGoogle Scholar
  54. Gold, P. W., Kaye, W., Robertson, G. L., & Ebert, M. (1984). Abnormal regulation of argine vasopressin plasma and cerebrospinal fluid of patients with anorexia nervosa. New England Journal of Medicine, 308, 1117–1123.CrossRefGoogle Scholar
  55. Gray, P. (1975). Effect of adrenocorticotropic hormone on conditioned avoidance in rats interpreted as state-dependent learning. Journal of Comparative and physiological Psychology, 88, 281–284.PubMedCrossRefGoogle Scholar
  56. Greenberg, D., & Belmaker, R. H. (1985). DDAVP as a possible method to enhance positive benefit of behaviour therapy. British Journal of Psychiatry, 147, 713–715.PubMedCrossRefGoogle Scholar
  57. Grossen, N. E., & Kelley, M.J. (1972). Species-specific behavior and acquisition of avoidance behavior in rats. Journal of Comparative and Physiological Psychology, 81, 306–311.CrossRefGoogle Scholar
  58. Hagen, J. J., & Bohus, B. (1984). Vasopressin prolongs bradycardiac response during orientation. Behavioral and Neural Biology, 41, 77–83.CrossRefGoogle Scholar
  59. Haroutunian, V., & Riccio, D. C. (1977). The effect of arousal conditions during reinstatement treatment upon learned fear in young rats. Developmental Psychobiology, 10, 25–32.PubMedCrossRefGoogle Scholar
  60. Haroutunian, V., & Riccio, D. C. (1979). Drug-induced “arousal” and the effectiveness of CS exposure in the reinstatement of memory. Behavioral and Neural Biology, 26, 115–120.PubMedCrossRefGoogle Scholar
  61. Hayashi, T., Fischman, A. J., Kaskin, A. A., & Coy, D. H. (1984). Some analogs of Try-MIF-1 affect passive avoidance behavior but not motor activity in rats. Pharmacology Biochemistry and Behavior, 21, 809–812.CrossRefGoogle Scholar
  62. Henry, J. L. (1982). Circulating opioids: possible physiological roles in central nervous system. Neuroscience and Biohehavioral Reviews, 6, 229–245.CrossRefGoogle Scholar
  63. Hernandez, L. L. (1985). Vasopressin and ACTH analogs affect orienting but not activity in rabbits. Peptides, 2, 97–101.CrossRefGoogle Scholar
  64. Heuman, K. F. (Ed.). (1985). Proceedings of conference on corticotropin-releasing factor. Federal Proceedings, 44, 145–263.Google Scholar
  65. Iversen, L. L. (1984). Amino acids and peptides: fast and slow chemicals in the nervous system? Proceedings of the Royal Society of London, 221, 245–260.PubMedCrossRefGoogle Scholar
  66. Izquierdo, I., Perry, M. L., Dias, R. D., Souza, D. O., Elisabetsky, E., Carrasco, M. A., Orsingher, O. A., & Netto, C. A. (1981). Endogenous opioids, memory modulation, and state dependency. In J. L. Martinez Jr., R. A. Jensen, R. B. Messing, H. Rigter, & J. L. McGaugh (Eds.), Endogenous peptides and learning and memory processes (pp. 269–304). New York: Academic Press.Google Scholar
  67. Jacquet, Y. (1978). Opiate effects after adrenocorticotropin or B-endorphin injection in the periaqueductal grey matter of rats. Science, 201, 1032–1034.PubMedCrossRefGoogle Scholar
  68. Jarbe, T. U. C., Svensson, R., & Laaksonen, T., (1983). Conditioning of a discriminative drug stimulus: overshadowing and blocking procedures. Scandinavian Journal of Psychology, 24, 325–330.PubMedCrossRefGoogle Scholar
  69. Jenkins, J. S., Ang, V. T. Y., Hawthorn, J., Rossor, M. N., & Iversen, L. (1984). Vasopressin, oxytocin and neurophysins in the human brain and spinal cord. Brain Research, 291, 111–117.PubMedCrossRefGoogle Scholar
  70. Jennings, J. R., Nebes, R. D., & Reynolds, C. F., III. (1986). Vasopressin peptide (DDAVP) may narrow the focus of attention in normal elderly. Psychiatry Research, 17, 31–39.PubMedCrossRefGoogle Scholar
  71. Kalin, N. E. (1986). ACTH in plasma and CSF in the Rhesus monkey. Biological Psychiatry, 21, 124–140.PubMedCrossRefGoogle Scholar
  72. Kastin, A. J., Olson, R. D., Sandman, C. A., & Coy, D. H. (1981). Multiple independent actions of neuropeptides on behavior. In J. L. Martinez Jr., R. A. Jensen, R. B. Messing, H. Rigter, & J. L. McGaugh (Eds.), Endogenous Peptides and Learning and Memory Processes (pp. 563–578). New York: Academic Press.Google Scholar
  73. Kasprow, W. J., Catterson, D., Schachtman, T. R., & Miller, R. R. (1984). Attenuation of latent inhibition by post-acquisition reminder. Quarterly Journal of Experimental Psychology, 36B, 53–63.Google Scholar
  74. Kelley, M.J. (1982). Event-reinforcer interactions in conditioning. Unpublished D. Phil, thesis at The University of Sussex.Google Scholar
  75. Kelley, M.J. (1985a). Epinephrine-cue contiguity is required for the modulation of CS excitatory strength. Physiological Psychology, 13, 217–218.Google Scholar
  76. Kelley, M J. (1985b). Species-typical taxic behavior and event-reinforcer reactions. Learning and Motivation, 16, 301–314.CrossRefGoogle Scholar
  77. Kelley, M.J. (1986a). Selective attention and stimulus-reinforcer interactions in the pigeon. The Quarterly Journal of Experimental Psychology, 38B, 97–110.Google Scholar
  78. Kelley, M.J., & Lightman, S. L. (1986). The conditioned release of oxytocin in female rats. Manuscript submitted for publication.Google Scholar
  79. Kelley, M. J:, Lightman, S. L., Murphy, D., & O’Connor, K. (1986). Personality, sustained attention and individual differences in nicotine-induced levels of vasopressin. Manuscript submitted for publication.Google Scholar
  80. Kennett, D. J., Devlin, M. C., & Ferrier, B. M. (1982). Influence of oxytocin on memory processes: validation by a control study. Life Sciences, 31, 273–275.PubMedCrossRefGoogle Scholar
  81. Koob, G. F., LeMoal, M., & Bloom, F. E. (1984). The role of endorphins in neurobiology, behavior, and psychiatric disorders. In C. B. Nemeroff & A.J. Dunn (Eds.), Peptides, hormones and behavior. New York: Spectrum.Google Scholar
  82. Koob, G. F., Dantzer, R., Rodriguez, F., Bloom, F. E., & Le Moal, M. (1985). Osmotic stress mimics effects of vasopressin on learned behavior. Nature, 315, 750–752.PubMedCrossRefGoogle Scholar
  83. Koob, G. F., LeBrun, C., Martinez, Jr., J. L., Bluthe, R. M., Dantzer, R., Bloom, F. E., & Le Moal, M. (1985). Use of arginine vasopressin antagonists in eliciting the mechanism of action for the behavioral effects of arginine vasopressin. In R. W. Schrier (Eds.), Vasopressin (pp. 195–201). New York: Raven Press.Google Scholar
  84. Kovacs, G. L., & Telegdy, G. (1985). Role of oxytocin in memory, amnesia and reinforcement. In J. A. Amico & A. G. Robinson (Eds.), Oxytocin, clinical and laboratory studies (pp. 359–371). New York: Exerpta Medica.Google Scholar
  85. Krejci, I., Kupkova, B., Dlaba C.A., & Kasafirek, E. (1983). On the effects of neurohypophyseal hormones, analogs and fragments on the extinction of avoidance responding. In E. Endroczi, L. Angelucci, U. Scapagnini, & de Wied, D. (Eds.), International conference on integrative neurohormonal mechanisms: Neuropeptides and psychosomatic processes. Budapest: Akademiae Kiado.Google Scholar
  86. Krieger, D. T. (1983). Brain peptides: What, where, and why? Science, 222, 975–985.PubMedCrossRefGoogle Scholar
  87. Laczi, F., Gaffori, O., de Kloet, E. R., & de Wied, D. (1983a). Differential responses in immunoreactive arginine-vasopressin content of microdissected brain regions during passive avoidance behavior. Brain Research, 260, 342–346.PubMedCrossRefGoogle Scholar
  88. Laczi, F., Gaffori, O., de Kloet, E. R., & de Wied, D. (1983b). Arginine-vasopressin content of hippocampus and amygdala during passive avoidance behavior in rats. Brain Research, 280, 309–315.PubMedCrossRefGoogle Scholar
  89. Laczi, F., Gaffori, O., Fekete, M., de Kloet, E. R., & de Wied, D. (1984). Levels of arginine-vasopressin in cerebrospinal fluid during passive avoidance behavior in rats. Life Sciences, 34, 2385–2391.PubMedCrossRefGoogle Scholar
  90. Lader, M. (1980). Psychophysiology studies in anxiety. In G. D. Burrows & B. Davies (Eds.), Handbook of studies on anxiety (pp. 59–88). North Holland: Elsevier.Google Scholar
  91. LaHoste, G. J., Olson, G. A., Kaskin, A. J., & Olson, R. D. (1980). Behavioral effects of melanocyte stimulating hormone. Neuroscience and Biobehavioral Reviews, 4, 9–16.PubMedCrossRefGoogle Scholar
  92. Lester, L. S., & Fanslow, M. S. (1985). Exposure to a cat produces opioid analgesia in rats. Behavioral Neuroscience, 99, 756–759.PubMedCrossRefGoogle Scholar
  93. Mackintosh, N.J. (1983). Conditioning and associative learning. Oxford: Clarendon Press.Google Scholar
  94. Macleod, C., Mathews, A., & Tata, P. (1986). Attentional bias in emotional disorders. Journal of Abnormal Psychology, 95, 15–20.PubMedCrossRefGoogle Scholar
  95. Markey, K. A., & Sze, P. Y. (1984). Influence of ACTH in the locus coeruleus of the mouse brain. Neuroendocrinology, 38, 269–275.PubMedCrossRefGoogle Scholar
  96. McGaugh, J. L. (1983). Hormonal influence on memory. Annual Review of Psychology, 34, 297–323.PubMedCrossRefGoogle Scholar
  97. Mens, W. B. J., Bouman, H. J., Bakker, E. A. D., & van Wimersma Greidanus, T. B. (1980). Differential effects of various stimuli on AVP levels in blood and cerebrospinal fluid. European Journal of Pharmacology, 68, 89–92.PubMedCrossRefGoogle Scholar
  98. Meyer, M. E., & Bohus, B. (1983). The modulation of the dorsal immobility response in the adult Wister rat: The opposite effect of ACTH4–10 and [D-Phe7]ACTH4–10. Behavior and Neural Biology, 38, 194–204.CrossRefGoogle Scholar
  99. Miller, L. H., Fisher, S. C., Groves, G. A., Rudrauff, M. E., & Kaskin, A. (1977). MSH/ACTH influences on the CAR in human subjects: A negative finding. Pharmacology Biochemistry and Behavior, 7, 417 – 419.CrossRefGoogle Scholar
  100. Morley, S. (1977). The incubation of avoidance behavior: strain differences in susceptibility. Behavior Research and Therapy, 15, 365–367.CrossRefGoogle Scholar
  101. Nesse, R. H., Curtis, G. C., Thyer, B. A., McCann, D. S., Huber-Smith, M. J., & Knoff, R. F. (1985). Endocrine and cardiovascular responses during phobic anxiety. Psychosomatic Medicine, 47, 320–332.PubMedGoogle Scholar
  102. O’Brien, C. P., Ehrman, R. N., & Ternes, J. W. (1986). Classical conditioning in human opioid tolerance. In S. R. Goldberg & I. P. Stolerman (Eds.), Behavioral analysis of drug dependence (pp. 329–356). New York: Academic Press.Google Scholar
  103. O’Donohue, T. L., Handelmann, G. E., Miller, R. L., & Jacobowitz, D. M. (1982). N-acetylation regulates the behavioral activity of alpha-melanotropin in a multineurotransmitter neuron. Science, 215, 1125–1127.CrossRefGoogle Scholar
  104. Nicolaides, E. D., Tinney, F. J., Kaltenbronn, J. S., Repine, D. A., DeJohn, D. A., Lunney, E. A., Roark, W. H., Marriott, J. G., Davis, R. E., & Voigtman, R. E. (1986). Modified di- and tripepetides of the c-terminal portion of oxytocin and vasopressin as possible cognition activation agents. Journal of Medicinal Chemistry, 29, 959–971.PubMedCrossRefGoogle Scholar
  105. Æhman, A., Dimberg, U., & Ost, L. (1985). Animal and social phobias: Biological constraints on learned fear responses. In S. Reiss & R. R. Bootzin (Eds.), Theoretical issues in behavior therapy (pp. 123–175). New York: Academic Press.Google Scholar
  106. Ælson, G. A., Olson, R. D., & Kaskin, A.J. (1985). Endogenous opiates: 1984. Peptides, 6, 769–791.CrossRefGoogle Scholar
  107. Pi-Sunyer, X., Kissileff, H. R., Thornton, J., & Smith, G. P. (1982). C-terminal octapeptide of chole- cystokinin decreases food intake in obese men. Physiology and Behavior, 29, 627–630.PubMedCrossRefGoogle Scholar
  108. Pigache, R. M., & Righter, H. (1981). The effects of peptides related to ACTH on mood and vigilancein man. In Tj. B. van Wimersma Griedanus & L. H. Rees (Eds.), ACTH and LPH in health and disease (pp. 191–207). Basel: S. Karger.Google Scholar
  109. Post, R. M., Pickar, D., Ballenger, J. C., Naber, D., & Rubinow, D. R. (1984). Endogenous opiates in cerebrospinal fluid: Relationship to mood and anxiety. In R. M. Post & J. C. Ballenger (Eds.), Neurobiology of mood disorders (pp. 356–368). London: Williams & Wilkens.Google Scholar
  110. Raid-Fahmy, D., Read, G. F., Walker, R. F., & Griffiths, K. (1987). Steroids in saliva for assessing endocrine function. Endocrine Reviews, 3, 367–396.CrossRefGoogle Scholar
  111. Raskin, M. A., Weitzman, R. E., Orenstein, H., Fisher, D. A., & Courtney, N. (1978). Is antidiuretic hormone elevated in psychosis? A pilot study. Biological Psychiatry, 13, 385–391.Google Scholar
  112. Redmond, D. E., Jr. (1981). Clonidine and the primate locus coeruleus: Evidence suggesting anxiolytic and anti-withdrawal effects. In H. Lai & S. Fielding (Eds.), Psychopharmacology of Clonidine. New York: Alan Liss.Google Scholar
  113. Redmond, D.E. Jr., & Huang, Y. H. (1979). New evidence for a locus coeruleus-norepinephrine connection with anxiety. Life Sciences, 25, 2149–2162.PubMedCrossRefGoogle Scholar
  114. Riccio, D. C., & Concannon, J. T. (1981). ACTH and the reminder phenomena. In J. L. Martinez, Jr., R. A.Jensen, & R. B. Messing (Eds.), Endogenous peptides and learning and memory processes. New York: Academic Press.Google Scholar
  115. Righter, H. (1982). Vasopressin and memory: The influence of prior experience with the training situation. Behavioral Neurobiology, 34, 337–351.Google Scholar
  116. Ritzman, R. F., Colbern, D. L., Zimmerman, E. G., & Krivoy, W. (1984). Neurohypophyseal hormones in tolerance and physical dependence. Pharmacology and Therapy, 23, 281–312.CrossRefGoogle Scholar
  117. Robbins, T. W., Everitt, B. J., & Cole, B. J. (1985). Functional hypotheses of the coeruleocortical noradrenergic projection: A review of recent experimentation and theory. Physiological Psychology, 13, 127–150.Google Scholar
  118. Roy-Byrne, P. P., Uhde, T. W., Post, R. M., Gallucci, W., Chrousos, G. P., & Gold, P. W. (1986). The corticotropin-releasing hormone stimulation test in patients with panic disorders. American Journal of Psychiatry, 143, 896–899.PubMedGoogle Scholar
  119. Sapolsky, R. M., Krey, L. C., & McEwen, B. S. (1984). Stress down-regulates corticocosterone receptors in a site-specific manner in the brain. Endocrinology, 114, 287–292.PubMedCrossRefGoogle Scholar
  120. Sartory, G. (1983). The orienting response and psychopathology: Anxiety and phobias. In D. Siddle (Ed.), Orienting and habituation: Perspectives in human research (pp. 449–474). New York: Wiley.Google Scholar
  121. Schacter, S., & Singer, J. (1962). Cognitive social and physiological determinants of emotional state. Psychological Review, 69, 379–399.CrossRefGoogle Scholar
  122. Shillabeer, G., & Davison, J. S. (1984). The Cholecystokinin antagonist, proglumide, increases food intake in the rat. Regulatory Peptides, 8, 171–176.PubMedCrossRefGoogle Scholar
  123. Smock, T., & Fields, H. L. (1981). AGTH 1–24 blocks opiate-induced analgesia in the rat. Brain Research, 212, 202–206.PubMedCrossRefGoogle Scholar
  124. Strupp, B. J., & Levitsky, D. A. (1985). A mnemonic role for vasopressin: The evidence for and against. Neuroscience and Biobehavioral Reviews, 9, 399–411.PubMedCrossRefGoogle Scholar
  125. Strupp, B. J., & Weingartner, H. (1984). Vasopressin and cognition. Drug Development Research, 4, 501 – 516.CrossRefGoogle Scholar
  126. Strupp, B., Weingartner, H., Goodwin, F. K., & Gold, P. W. (1984). Neurohypophseal hormones and cognition. Pharmacology and Therapeutics, 23, 179–191.Google Scholar
  127. Terman, G. W., Shavit, Y., Lewis, J. W., Cannon, J. T., & Liebeskind, J. C. (1984). Intrinsic mechanisms of pain inhibition: Activation by stress. Science, 226, 1270–1277.PubMedCrossRefGoogle Scholar
  128. Timsit-Berthier, M., Mantanus, H., Devos, J. E., & Spiegel, R. (1982). Action of lysine-vasopressin on human electroencephalographic activity. Neuropsychobiology, 8, 248–258.PubMedCrossRefGoogle Scholar
  129. Tinus, T. P., Beckwith, B. E., Wagner, N., Tinus, K. A., and Traynor, M. M. (1986). Differential actions of arginine vasopressin and alpha-melanocyte-stimulating hormone on reactivation of memory after hypotherma-induced amnesia. Physiological Psychology, 15–22.Google Scholar
  130. Tomkins, E. H., Sturgis, C. C., & Wearn, J. T. (1919). Studies in epinephrine. II. Archives of Internal Medicine, 24, 247–268.CrossRefGoogle Scholar
  131. Vale, W., & Greer, M. (Eds.). (1985). Proceedings of conference on corticotropin-releasing factor. Federation Proceedings, 44, 145–263.Google Scholar
  132. Valentino, R. J., Foote, S. L., & Aston-Jones, G. (1983). CRF activates noradrenergic neurons of the locus coeruleus. Brain Research, 363–369.Google Scholar
  133. Vanderhaeghen, J.-J., & Crawley, J. N. (Eds.). (1985). Neuronal cholecystokinin: Annuals of the New York Academy of Sciences, Vol. 448. New York: The New York Academy of Sciences,Google Scholar
  134. van der Velde, C. D. (1983). Rapid clinical effectiveness of MIF-1 in the treatment of major depressive illness. Peptides, 4, 297–300.PubMedCrossRefGoogle Scholar
  135. van Heuven-Nolsen, D., De Kloet, E. R., & Versteeg, D. H. G. (1984). Oxytocin affects utilization of noradrenaline in distinct limbic-forebrain regions of the rat brain. Neuropharmacology, 23, 1373–1377.PubMedCrossRefGoogle Scholar
  136. Van Wimersma Greidanus, Tj B., Bohus, B., Kovacs, G. L., Versteeg, D. H. G., Burbach, J. P. H., & de Wied, D. (1983). Sites of behavioral and neurochemical action of ACTH-like peptides and neurohypophyseal hormones. Neuroscience and Biobehavioral Reviews, 7, 453–463.CrossRefGoogle Scholar
  137. Veith, J. L., Sandman, C. A., George, J. M., & Kendall, J. W. (1985). The relationship of endogenous ACTH levels to visual-attentional functioning in patients with congenital adrenal hyperplasia. Psychoneuroendocrinology, 10, 33–48.PubMedCrossRefGoogle Scholar
  138. Veldhuis, H. D., & de Wied, D. (1984). Differential behavioral actions of corticotropin-releasing factor. Pharmacology Biochemistry and Behavior, 21, 707–714.CrossRefGoogle Scholar
  139. Verbalis, J. G., McCann, M. J., McHale, C. M., & Strieker, E. M. (1986). Oxytocin secretion in response to cholecystocinin and food: Differentiation of nausea from satiety. Science, 232, 1417–1419.PubMedCrossRefGoogle Scholar
  140. von Kronning, L., Almay, B. G. L., Johansson, F., & Terenius, L. (1978). Pain perception and endorphin levels in cerebrospinal fluid. Pain, 5, 359.CrossRefGoogle Scholar
  141. Watkins, L. R., Kinscheck, I. B., & Mayer, D.J. (1984). Potentiation of opiate analgesia and apparent reversal of morphine tolerance by proglumide. Science, 224, 395–396.PubMedCrossRefGoogle Scholar
  142. Watts, F. N., & Sharrock, R. (1985). Description and measurement of concentration problems in depressed patients. Psychological Medicine, 15, 317–326.PubMedCrossRefGoogle Scholar
  143. Williams, J. L., Drugan, R. C., & Maier, S. P. (1984). Exposure to uncontrollable stress alters withdrawal from morphine. Behavioral Neuroscience, 98, 836–846.PubMedCrossRefGoogle Scholar
  144. Williams, T. D., Carter, D. A., & Lightman, S. L. (1985). Sexual dimorphism in the posterior pituitary response to stress in the rat. Endocrinology, 116, 738–741.PubMedCrossRefGoogle Scholar
  145. Wolkowitz, O. M., Tinklenberg, J. R., & Weingartner, H. (1985). A pharmacological perspective of cognitive functions. Neuropsychobiology, 14, 133–156.PubMedCrossRefGoogle Scholar
  146. Wood, S. P., Tickle, I. J., Treharne, A. M., Pitts, J. E., Mascarenhas, Y., Li, J. Y., Husain, J., Cooper, S., Bludell, T. L., Hruby, V.J., Buku, A., Fischman, A.J., & Wyssbrod, H. R. (1986). Crystal structure analysis of deamino-oxytocin: Conformational flexibility and receptor binding. Science, 232, 633–636.PubMedCrossRefGoogle Scholar
  147. Zerbe, R. L. (1985). Genetic factors in normal and abnormal regulation of vasopressin secretion. In R. W. Schrier (Ed.), Vasopressin (pp. 213–220). New York: Raven Press.Google Scholar
  148. Zis, A. P., Haskett, R. F., Albala, A., Carroll, B. J., & Lohr, N. E. (1985). Opioid regulation of hypothalamic-pituitary-adrenal function in depression. Archives of General Psychiatry, 42, 383–386.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Michael J. Kelley
    • 1
  1. 1.University of Hawaii at ManoaHonoluluUSA

Personalised recommendations