Constructing Microbial Strains for Degradation of Halogenated Aromatic Hydrocarbons

  • Peter J. Chapman
Part of the Basic Life Sciences book series (BLSC, volume 45)


Studies of the biodegradation of organic compounds have gained increased interest in the last few years as their relevance to environmental pollution and the treatment of chemical wastes has acquired a wider appreciation. This area of research, once described in some microbial physiology texts as “peripheral metabolism,” has become central to our concerns about the persistence of noxious organic chemicals in the environment and to the development of rational biological approaches for their removal.


Pseudomonas Putida Muconic Acid Salicylate Hydroxylase Pseudomonas Mendocina Chlorophenoxyacetic Acid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Apajalahti, J.H.A., and M.S. Salkinaja-Salmen (1987) Dechlorination and para-hydroxylation of polychlorinated phenols by Rhodococcus chlorophenolicus. J. Bacteriol. 169:675–681.PubMedGoogle Scholar
  2. 2.
    Chatterjee, D.K., S.T. Kellog, S. Hamada, and A.M. Chakrabarty (1981) Plasmid specifying total degradation of 3-chlorobenzoate by a modified ortho pathway. J. Bacteriol. 146:639–646.PubMedGoogle Scholar
  3. 3.
    DeBont, J.A.M., M.J.A.W. Vorage, S. Hartmans, and W.J.J. van den Tweel (1986) Microbial degradation of 1,3-dichlorobenzene. Appl. Environ. Microbiol. 52:677–680.Google Scholar
  4. 4.
    Dorn, E., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Two catechol 1,2-dioxygenases from a 3-chlorobenzoate-grown pseudomonad. Biochem. J. 174:73–84.PubMedGoogle Scholar
  5. 5.
    Dorn, E., M. Hellwig, W. Reineke, and H.-J. Knackmuss (1974) Isolation and characterization of a 3-chlorobenzoate degrading pseudomonad. Arch. Microbiol. 99:61–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Evans, W.C., B.S.W. Smith, H.N. Fernley, and J.I. Davies (1971) Bacterial metabolism of 2,4-dichlorophenoxyacetate. Biochem. J. 122:543–551.PubMedGoogle Scholar
  7. 7.
    Gibson, D.T., V. Mahadevan, and J.F. Davey (1974) Bacterial metabolism of para-and meta-xylene: Oxidation of the aromatic ring. J. Bacteriol. 119:930–936.Google Scholar
  8. 8.
    Gibson, D.T., J.R. Kock, C.L. Schuld, and R.E. Kallio (1968) Oxidative degradation of aromatic hydrocarbons by microorganisms. II. Metabolism of halogenated aromatic hydrocarbons. Biochemistry 7:3795–3802.PubMedCrossRefGoogle Scholar
  9. 9.
    Gibson, D.T., M. Hensley, H. Jashioka, and T.J. Mabry (1970) Formation of (+)-cis-2,3-dihydroxy-l-methylcyclohexa-4,6-diene from toluene by Pseudomonas putida. Biochemistry 9:1626–1630.PubMedCrossRefGoogle Scholar
  10. 10.
    Gibson, D.T., B. Gschwendt, W.K. Yeh, and V.M. Kobal (1973) Initial reactions in the oxidation of ethylbenzene by Pseudomonas putida. Biochemistry 12:1520–1528.PubMedCrossRefGoogle Scholar
  11. 11.
    Haller, H.D., and R.K. Finn (1979) Biodegradation of 3-chlorobenzoate and formation of black color in the presence and absence of benzoate. Eur. J. Appl. Microbiol. Biotechnol. 8:191–205.CrossRefGoogle Scholar
  12. 12.
    Hartman, J., W. Reineke, and H.-J. Knackmuss (1979) Metabolism of 3-chloro-, 4-chloro-and 3,5-dichlorobenzoate by a pseudomonad. Appl. Environ. Microbiol. 37:421–428.Google Scholar
  13. 13.
    Horvath, R.S., and M. Alexander (1970) Cometabolism of m-chlorobenzoate by an Arthrobacter. Appl. Microbiol. 20:254–258.PubMedGoogle Scholar
  14. 14.
    Kilbane, J.J., D.K. Chatterjee, J.S. Karns, S.T. Kellog, and A.M. Chakrabarty (1982) Biodegradation of 2,4,5-trichlorophenoxyacetic acid by a pure culture of Pseudomonas cepacia. Appl. Environ. Microbiol. 44:72–78.PubMedGoogle Scholar
  15. 15.
    Kilbourn, R.G., and D.T. Gibson (1979) Metabolism of chlorinated benzenes by Pseudomonas putida. In Annual Meeting of the American Society for Microbiology, Los Angeles, California, Abstr. N70, p. 191.Google Scholar
  16. 16.
    Kunz, D.A., and P.J. Chapman (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: Evidence for new functions of the TOL (pWWO) plasmid. J. Bacteriol. 146:179–191.PubMedGoogle Scholar
  17. 17.
    Latorre, J., W. Reineke, and H.-J. Knackmuss (1984) Microbial metabolism of chloroanilines: Enhanced evolution by natural genetic exchange. Arch. Microbiol. 140:159–165.CrossRefGoogle Scholar
  18. 18.
    Lehrbach, P.R., J. Zeyer, W. Reineke, H.-J. Knackmuss, and K.N. Timmis (1984) Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J. Bacteriol. 158:1025–1032.PubMedGoogle Scholar
  19. 19.
    Nakazawa, T., S. Inouye, and A. Nakazawa (1984) Positive regulation and transcription initiation of XYL operons on TOL plasmid. In Plasmids in Bacteria, D.R. Helinski, S.N. Cohen, D.B. Clewell, D.A. Jackson, and A. Hollaender, eds. Plenum Press, New York, pp. 415–429.Google Scholar
  20. 20.
    Reineke, W., and H.-J. Knackmuss (1979) Construction of haloaromatics utilising bacteria. Nature (London) 277:385–386.CrossRefGoogle Scholar
  21. 21.
    Reineke, W., and H.-J. Knackmuss (1980) Hybrid pathway for chlorobenzoate metabolism in Pseudomonas sp. B13 derivatives. J. Bacteriol. 142:467–473.PubMedGoogle Scholar
  22. 22.
    Reineke, W., and H.-J. Knackmuss (1984) Microbial metabolism of haloaromatics: Isolation and properties of a chlorobenzene-degrading bacterium. Appl. Environ. Microbiol. 47:395–402.PubMedGoogle Scholar
  23. 23.
    Reineke, W., D.J. Jeenes, P.A. Williams, and H.-J. Knackmuss (1982) TOL plasmid pWWO in constructed halobenzoate-degrading Pseudomonas strains: Prevention of meta pathway. J. Bacteriol. 150:195–201.PubMedGoogle Scholar
  24. 24.
    Richardson, K.L., and D.T. Gibson (1984) A novel pathway for toluene oxidation in Pseudomonas mendocina. In Annual Meeting of the American Society for Microbiology, St. Louis, Missouri, Abstr. K54, p. 156.Google Scholar
  25. 25.
    Rubio, M.A., K.-H. Engesser, and H.-J. Knackmuss (1986) Microbial metabolism of chlorosalicylates: Accelerated evolution by natural genetic exchange. Arch. Microbiol. 145:116–122.PubMedCrossRefGoogle Scholar
  26. 26.
    Rubio, M.A., K.-H. Engesser, and H.-J. Knackmuss (1986) Microbial metabolism of chlorosalicylates: Effect of prolonged subcultivation on constructed strains. Arch. Microbiol. 145:123–125.PubMedCrossRefGoogle Scholar
  27. 27.
    Schmidt, E., and H.-J. Knackmuss (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Conversion of chlorinated muconic acids into maleoylacetic acid. Biochem. J. 192:339–347.PubMedGoogle Scholar
  28. 28.
    Schmidt, E., G. Remberg, and H.-J. Knackmuss (1980) Chemical structure and biodegradability of halogenated aromatic compounds. Halogenated muconic acids as intermediates. Biochem. J. 192:331–337.PubMedGoogle Scholar
  29. 29.
    Schmidt, E., M. Hellwig, and H.-J. Knackmuss (1983) Degradation of chlorophenols by a defined mixed microbial community. Appl. Environ. Microbiol. 46:1038–1044.PubMedGoogle Scholar
  30. 30.
    Schraa, G., M.L. Boone, M.S.M. Jetten, A.R.W, van Neerven, P.J. Colberg, and A.J.B. Zehnder (1986) Degradation of 1,4-dichlorobenzene by Alcaligenes sp. strain A175. Appl. Environ. Microbiol. 52:1374–1381.PubMedGoogle Scholar
  31. 31.
    Spain, J.C., and S.F. Nishino (1987) Degradation of 1,4-dichlorobenzene by a Pseudomonas sp. Appl. Environ. Microbiol. 53:1010–1019.PubMedGoogle Scholar
  32. 32.
    Steiert, J.G., and R.L. Crawford (1986) Catabolism of pentachlorophenol by a Flavobacterium. Biochem. Biophys. Res. Commun. 141:825–830.PubMedCrossRefGoogle Scholar
  33. 33.
    Tiedje, J.M., J.M. Duxbury, M. Alexander, and J.E. Dawson (1969) Metabolism pathway of degradation of chlorocatechols by an Arthrobacter species. J. Agric. Food Chem. 17:1021–1026.PubMedCrossRefGoogle Scholar
  34. 34.
    Walker, N., and D. Harris (1970) Metabolism of 3-chlorobenzoic acid by Azotobacter species. Soil Biol. Biochem. 2:27–32.CrossRefGoogle Scholar
  35. 35.
    Williams, P.A., and K. Murray (1974) Metabolism of benzoate and methylbenzoates by Pseudomonas putida (arvilla) mt-2: Evidence for the existence of a TOL plasmid. J. Bacteriol. 120:416–423.PubMedGoogle Scholar
  36. 36.
    Worsey, M.J., F.C.H. Franklin, and P.A. Williams (1978) Regulation of the degradative pathway enzymes coded for the TOL plasmid (pWWO) from Pseudomonas putida mt-2. J. Bacteriol. 134:757–767.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Peter J. Chapman
    • 1
  1. 1.Department of BiochemistryUniversity of MinnesotaSt. PaulUSA

Personalised recommendations