Advertisement

Prospects for Laboratory Engineering of Bacteria to Degrade Pollutants

  • K. N. Timmis
  • F. Rojo
  • J. L. Ramos
Part of the Basic Life Sciences book series (BLSC, volume 45)

Abstract

Over the last few decades enormous quantities of industrial chemicals have been released into the environment. A large number of them, particularly those structurally related to natural compounds, are readily degraded by soil and water microorganisms. However, a significant proportion, mainly those having novel structural elements or substituents rarely found in nature (xenobiotics), are only catabolized slowly and thus tend to persist and accumulate in the environment. Certain compounds, particularly those that exhibit some degree of toxicity, contribute substantially to environmental pollution. Recent environmental catastrophes have underscored the acute danger that industrial chemicals constitute for our biosphere. However, the existence of many waste dump sites containing highly toxic substances and large scale chronic pollution certainly represent a more important long-term hazard. Clearly, in addition to terminating current production of the more toxic and persistent industrial chemicals, it is essential to exploit more effectively the biodegradative capacities of soil microorganisms in order to diminish the consequences of existing and continuing environmental pollution.

Keywords

Catabolic Pathway Phenol Hydroxylase Toluate Dioxygenase Meta Pathway Ortho Cleavage 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bartels, I., H.-J. Knackmuss, and W. Reineke (1984) Suicide inactivation of catechol 2,3-dioxygenase from Pseudomonas putida mt-2 by 3-halocatechols. Appl. Environ. Microbiol. 47:500–505PubMedGoogle Scholar
  2. 2.
    Campbell, J.H., J.A. Lengyel, and J. Langridge (1973) Evolution of a second gene for β-galactosidase in Escherichia coli. Proc. Natl. Acad. Sci., USA 70:1841–1845.PubMedCrossRefGoogle Scholar
  3. 3.
    Clarke, P.H. (1978) Experiments in microbial evolution. In The Bacteria, Vol. 4, L.N. Ornston and J.R. Sokatch, eds. Academic Press, New York, pp. 137–218.Google Scholar
  4. 4.
    Cocks, G.T., J. Aguilar, and E.C.C. Lin (1974) Evolution of L-1,2-propanediol catabolism in Escherichia coli by recruitment of enzymes for L-glucose and L-lactate metabolism. J. Bacteriol. 118:83–88.PubMedGoogle Scholar
  5. 5.
    Dorn, E., M. Hellwig, W. Reineke, and H.-J. Knackmuss (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch. Microbiol. 99:61–70.PubMedCrossRefGoogle Scholar
  6. 6.
    Gibson, D.T. (1984) Microbial Degradation of Organic Compounds (Microbiology Series, Vol. 13), Marcel Dekker, Inc., New York.Google Scholar
  7. 7.
    Harayama, S., and R.H. Don (1985) Catabolic plasmids: Their analysis and utilization in the manipulation of bacterial metabolic activities. In Genetics Engineering: Principles and Methods, Vol. 7, J.K. Setlow and A. Hollaender, eds. Plenum Publishing Corporation, New York, pp. 283–307.CrossRefGoogle Scholar
  8. 8.
    Harayama, S., P.R. Lehrbach, and K.N. Timmis (1984) Transposon mutagenesis analysis of meta-cleavage pathway operon genes of the TOL plasmid of Pseudonomas putida mt-2. J. Bacteriol. 160:251–255.PubMedGoogle Scholar
  9. 9.
    Harayama, S., J.L. Ramos, and K.N. Timmis (1986) Experimental evolution of plasmid specified functions. In Antibiotic Resistance Genes: Ecology, Transfer and Expression, Banbury Report 24, S.B. Levy and R.P. Novick, eds. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, pp. 389–402.Google Scholar
  10. 10.
    Harayama, S., R.A. Leppik, M. Rekik, N. Mermod, P.R. Lehrbach, W. Reineke, and K.N. Timmis (1986) Gene order of the TOL catabolic plasmid upper pathway operon and oxidation of both toluene and ben-zylalcohol by the xylA product. J. Bacteriol. 167:455–461.PubMedGoogle Scholar
  11. 11.
    Knackmuss, H.-J. (1983) Xenobiotic degradation in industrial sewage: Haloaromatics as target substrates. In Biotechnology, Biochemical Society Symposium No. 48, C.F. Phelps and P.H. Clarke, eds. Biochemical Society, London, pp. 173–190.Google Scholar
  12. 12.
    Knackmuss, H.-J., and M. Hellwig (1978) Utilization and cooxidation of chlorinated phenols by Pseudomonas sp. B13, Arch. Microbiol. 117:1–7.PubMedCrossRefGoogle Scholar
  13. 13.
    Lehrbach, P.R., J. Zeyer, W. Reineke, H.-J. Knackmuss, and K.N. Timmis (1984) Enzyme recruitment in vitro: Use of cloned genes to extend the range of haloaromatics degraded by Pseudomonas sp. strain B13. J. Bacteriol. 158:1025–1032.PubMedGoogle Scholar
  14. 14.
    Mermod, N., S. Harayama, and K.N. Timmis (1986) New route to bacterial production of indigo. Bio/Technology 4:321–324.CrossRefGoogle Scholar
  15. 15.
    Mortlock, R.P. (1982) Metabolic acquisitions through laboratory selection. Ann. Rev. Microbiol. 36:259–284.CrossRefGoogle Scholar
  16. 16.
    Pemberton, J.M., B. Corney, and R.H. Don (1979) Evolution and spread of pesticide degrading ability among soil microorganisms. In Plasmids of Medical, Environmental and Commercial Importance, K.N. Timmis and A. Puhler, eds. Elsevier /North-Holland Biomedical Press, Amsterdam, pp. 287–299.Google Scholar
  17. 17.
    Pieper, D.H., K.H. Engesser, R.H. Don, K.N. Timmis, and H.-J. Knackmuss (1985) Modified ortho-cleavage pathway in Alcaligenes eutrophus JMP134 for the degradation of 4-methylcatechol. FEMS Microbiol. Lett. 29:63–67.CrossRefGoogle Scholar
  18. 18.
    Ramos, J.L., and K.N. Timmis (1987) Experimental evolution of catabolic pathways of bacteria. Microbiol. Sci. 4:228–237.PubMedGoogle Scholar
  19. 19.
    Ramos, J.L., A. Stolz, W. Reineke, and K.N. Timmis (1986) Altered effector specificities in regulators of gene expression: TOL plasmid xylS mutants and their use to engineer expansion of the range of aromatics degraded by bacteria. Proc. Natl. Acad. Sci., USA 83: 8467–8471.PubMedCrossRefGoogle Scholar
  20. 20.
    Ramos, J.L., A. Wasserfallen, K. Rose, and K.N. Timmis (1987) Redesigning metabolic routes: Manipulation of TOL plasmid pathway for catabolism of alkylbenzoates. Science 235:593–596.PubMedCrossRefGoogle Scholar
  21. 21.
    Reineke, W., and H.-J. Knackmuss (1978) Chemical structure and biodegradability of halogenated aromatic compounds. Substituent effects on 1,2 dioxygenation of benzoic acid. Biochim. Biophys. Acta 542:312–423.Google Scholar
  22. 22.
    Reineke, W., and H.-J. Knackmuss (1979) Construction of haloaromatics utilizing bacteria. Nature 277:385–386.PubMedCrossRefGoogle Scholar
  23. 23.
    Rojo, F., D.H. Pieper, K.H. Engesser, H.-J. Knackmuss, and K.N. Timmis (1987) Assemblage of ortho cleavage route for simultaneous degradation of chloro-and methylaromatics. Science 235:1395–1398.CrossRefGoogle Scholar
  24. 24.
    Schmidt, E., I. Bartels, and H.-J. Knackmuss (1985) Degradation of 3-chlorobenzoate by benzoate or 3-methylbenzoate-utilizing cultures. FEMS Microbiol. Ecol. 31:381–389.Google Scholar
  25. 25.
    Timmis, K.N., M.I. Gonzalez-Carrero, T. Sekizaki, and F. Rojo (1986) Biological activities specified by antibiotic resistance plasmids. J. Antimicrob. Chemothe. Vol. 18, Suppl. C., pp. 1-12.Google Scholar
  26. 26.
    Timmis, K.N., P.R. Lehrbach, S. Harayama, R.H. Don, N. Mermod, S. Bas, R. Leppik, A.J. Weightman, W. Reineke, and H.-J. Knackmuss (1985) Analysis and manipulation of plasmid encoded pathways for the catabolism of aromatic compounds by soil bacteria. In Plasmids in Bacteria, D.R. Helinski, S.N. Cohen, D.B. Clewell, D.A. Jackson, and A. Hollaender, eds., Plenum Publishing Corporation, New York, pp. 719–739.CrossRefGoogle Scholar
  27. 27.
    Worsey, M.J., and P.A. Williams (1975) Metabolism of toluene and the xylenes by Pseudomonas putida (arvilla) mt-2: Evidence for a new function of the TOL plasmid. J. Bacteriol. 124:7–13.PubMedGoogle Scholar
  28. 28.
    Yen, K.M., and I.C. Gunsalus (1982) Plasmid gene organization: Naphthalene/salicylate oxidation. Proc. Natl. Acad. Sci., USA 79: 874–878.PubMedCrossRefGoogle Scholar
  29. 29.
    Yen, K.M., and I.C. Gunsalus (1985) Regulation of naphthalene catabolic genes of plasmid NAH7. J. Bacteriol. 162:1008–1013.PubMedGoogle Scholar
  30. 30.
    Zeyer, J., P.R. Lehrbach, and K.N. Timmis (1985) Use of cloned genes of Pseudomonas TOL plasmid to effect biotransformation of benzoates to cis-dihydrodiols and catechols by Escherichia coli cells. Appl. Environ. Microbiol. 50:1409–1413.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • K. N. Timmis
    • 1
  • F. Rojo
    • 1
  • J. L. Ramos
    • 1
  1. 1.Department of Medical BiochemistryUniversity of GenevaGenevaSwitzerland

Personalised recommendations