Skip to main content

Modulating Processes of Single Fusimotor Fibre Discharge in Man

  • Chapter
Stance and Motion
  • 85 Accesses

Summary

Experiments were performed on awake human subjects in which single nerve fibre activity was recorded in the lateral peroneal nerve using tungsten microelectrodes as described by Hagbarth & Vallbo (1967).

This discharge of thirteen single efferent fibres innervating the tibialis anterior muscle (TA) or the extensor digitorum longus muscle (EDL) was recorded. On the basis of their functional activity, seven fibres were identified as fusimotor fibres.

Their efferent nature was demonstrated by the fact that the various tests used to identify afferent fibres elicited no response of these fibres. These efferent fibres were considered as fusimotor because their discharges were uncorrected with any activation of extrafusal muscle fibres. Several means were used to detect activation of extrafusal fibres: surface EMG electrodes, tungsten electrodes deeply implanted in the muscle and especially the use of a high-sensitivity tension transducer (0.1 mN) placed on muscle tendons. Fusimotor fibres were generally spontaneously active with some fluctuation in the discharge frequency.

The activity in fusimotor fibres could be either elicited or modulated under the following conditions: clenching of the fists, pinna twisting, voluntary isometric contraction, passive phasic stretch of the muscle, mental computation, environmental disturbances, subject laughing, the sound of hand clapping, and subject listening to manoeuvre instructions. Moreover, during spontaneous fusimotor fiber activity two subjects were able to voluntarily stop the unit discharge.

The results are compared to those obtained in animal studies and discussed with reference to the notion of alpha-gamma linkage, static and dynamic gamma motoneuron activities, and to another available data concerning the effects of various stimulations on muscle spindle afferent activities in man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Appelberg, B., Hulliger, M., Johansson, H., and Sojka, P. C., 1983, Actions on gamma-motoneurons elicited by electrical stimulation of muscle group I afferent fibres in the hindlimb of the cat, J. Physiol., 335: 237–253.

    PubMed  CAS  Google Scholar 

  • Appenteg, K., Hulliger, M., Prochazka, A., and Zangger, P., 1983, Fusimotor action during movement, deduced by matching the pattern of afferent discharge in freely moving and anaesthetized cats, J. Physiol., 334: 29–30.

    Google Scholar 

  • Boyd, I. A., 1981, The action of the three types of intrafusal fibres in isolated cat muscle spindle on the dynamic and length sensitivities of primary and secondary sensory endings, in: Taylor, A., Prochazka, A, Eds., “Muscle receptors and movement”, MacMillan, London, pp. 17–32.

    Google Scholar 

  • Boyd, I. A., Gladden, M. H., McWilliam, P. N., and Ward, J., 1977, Control of dynamic and static nuclear bag fibres and nuclear chain fibres by gamma and beta axons in isolated cat muscle spindles, J. Physiol. 265: 133–162.

    PubMed  CAS  Google Scholar 

  • Brown, M. C., and Matthews, P. B. C., 1966, On the subdivision of efferent fibres to muscle spindle into static and dynamic fusimotor fibres, in: Andrew, B.L., Ed., “Control and innervation of skeletal muscle”, Truex, Oxford, pp. 18–31.

    Google Scholar 

  • Burke, D., 1981, The activity of human muscle spindle endings in normal behaviour, Int. Rev. Physiol., 20: 91–136.

    Google Scholar 

  • Burke, D., Hagbarth, K. E., and Lofstedt, L., 1978a, Muscle spindle responses in man to changes in load during accurate position maintenance, J. Physiol., 276: 159–164.

    PubMed  CAS  Google Scholar 

  • Burke, D., Hagbarth, K. E., and Lofstedt, L., 1978b, Muscle spindle activity in man during shortening and lengthening contractions, J. Physiol., 277: 131–142.

    PubMed  CAS  Google Scholar 

  • Burke, D., Hagbarth, K. E., and Skuse, N., 1979, Voluntary activation of spindle endings in human temporarily paralysed by nerve pressure, J. Physiol., 287: 329–336.

    PubMed  CAS  Google Scholar 

  • Burke, D., MacKeon, B., and Westerman, R. A., 1980, Induced changes in the threshold for activity in preparation for a voluntary contraction, J. Physiol., 302: 171–181.

    PubMed  CAS  Google Scholar 

  • Burke, D., Sundlof, G., and Wallin, G., 1977; Postural effects on muscle nerve sympathetic activity in man, J. Physiol., 272: 399–414.

    PubMed  CAS  Google Scholar 

  • Burke, D., Hagbarth, K. E., Lofstedt, L., and Wallin, B. G., 1976a, The response of human muscle spindle endings to vibration of non-contracting muscles, J. Physiol., 261: 673–693.

    PubMed  CAS  Google Scholar 

  • Burke, D., Hagbarth, K. E., Lofstedt, L., and Wallin, B. G., 1976b, The response of human spindle endings to vibration during isometric contraction, J. Physiol., 277: 131–142.

    Google Scholar 

  • Burke, D., McKeon, B., Skuse, N.F., and Westerman, R. A., 1980, Anticipation and fusimotor activity in preparation for a voluntary movement, J. Physiol., 306: 337–348.

    PubMed  CAS  Google Scholar 

  • Crowe, A., and Matthews, P. B. C., 1964, The effects of stimulation of static and dynamic fusimotor fibres on the response to stretching of the primary endings of muscle spindles, J. Physiol., 174: 109–131.

    PubMed  CAS  Google Scholar 

  • Delius, W., Hagbarth, K. E., Hongell, A., and Wallin, B. G., 1972a, General characteristics of sympathetic activity in human nerves, Acta Physiol. Scand., 84: 65–81.

    Article  PubMed  CAS  Google Scholar 

  • Delius, W., Hagbarth, K. E., Hongell, A. and Wallin, B. G., 1972b, Manoeuvres affecting sympathetic outflow in human skin nerves, Acta Physiol. Scand., 84: 177–186.

    Article  PubMed  CAS  Google Scholar 

  • Ellaway, P. H., and Trott, J. R., 1976, Reflex connections from muscle stretch receptors to their own fusimotor neurons, Prog. Brain Res., 44: 113–122.

    Article  PubMed  CAS  Google Scholar 

  • Ellaway, P. H., and Trott, J. R., 1978, Autogenic reflex action onto gamma motoneurons by stretch of triceps surae in the decerebrate cat, J. Physiol., 276: 49–66.

    PubMed  CAS  Google Scholar 

  • Ellaway, P. H., Pascoe, J. E., and Trott, J. R., 1976, The effects upon fusimotor neurons on small, brief stretches of their muscles, J. Physiol., 258: 48–49.

    Google Scholar 

  • Emonet-Dénand, F., Hunt, C. C., and Laporte, Y., 1985a, Fusimotor after-effects on responses of primary endings to test dynamic stimuli in cat muscle spindles, J. Physiol., 360: 187–200.

    PubMed  Google Scholar 

  • Emonet-Dénand, F., Hunt, C. C., and Laporte, Y., 1985b, Effects of stretch on dynamic fusimotor after-effects in cat muscle spindles, J. Physiol., 360: 201–223.

    PubMed  Google Scholar 

  • Fromm, C., and Noth, J., 1974, Autogenetic inhibition of gamma motoneurons in the spinal cat uncovered by DOPA injection, Pflügers Archiv für die ges. Physiol., 349: 247–256.

    Article  CAS  Google Scholar 

  • Fromm, C., Haase, J., and Noth, J., 1974, Length-dependent autogenetic inhibition of extensor gamma motoneurons in the decerebrate cat, Pflügers Archiv für die ges. Physiol., 363: 81–86.

    Article  Google Scholar 

  • Granit, R., Job, C., and Kaada, B. R., 1952, Activation of muscle spindle in pinna reflex, Acta Physiol Scand., 27: 161–168.

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth, K. E., 1952, Excitatory and inhibitory skin area for flexor and extensor motoneurons, Acta Physiol Scand. (suppl. 94), 26: 1–58.

    Article  CAS  Google Scholar 

  • Hagbarth, K. E., 1979, Exteroceptive, proprioceptive and sympathetic activity recorded with microelectrodes from human peripheral nerves, Mayo Clinic Proc, 54: 353–365.

    CAS  Google Scholar 

  • Hagbarth, K. E., and Vallbo, A. B., 1967, Mechanoreceptor activity recorded percutaneously with semimicroelectrodes in human peripheral nerves, Acta Physiol Scand., 69: 121–122.

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth, K. E., and Vallbo, A. B., 1968, Pulse and respiratory grouping of sympathetic impulses in human muscle nerves, Acta Physiol Scand., 74: 96–108.

    Article  PubMed  CAS  Google Scholar 

  • Hagbarth, K. E., Wallin, G., and Lofstedt, L., 1975, Muscle spindle activity in man during voluntary fast alternating movements, J. Neurol. Neurosurg. and Psvchiat, 38: 1143–1153.

    Article  CAS  Google Scholar 

  • Hallin, R. G., and Torebjork, H. E., 1974, Single unit sympathetic activity in human skin nerves during rest various manoeuvres, Acta Physiol. Scand., 92: 303–317.

    Article  PubMed  CAS  Google Scholar 

  • Henneman, E., Somjen, G., and Carpenter, P. O., 1965a, Functional significance of cell size in spinal motoneurons, J. Neurophys., 28: 560–580.

    CAS  Google Scholar 

  • Henneman, E., Somjen, G., and Carpenter, P. O., 1965b, Excitability and inhibitibility of motoneurons of different sizes, J. Neurophys., 28: 599–620.

    CAS  Google Scholar 

  • Henneman, E., and Mendell, L. M., 1981, Functional organization of motoneuron pool and its inputs, in.: Brookhart, J.M., Mountcastle, V.B., and Brooks, V.B., Eds., “Motor control (part 1), Handbook of Physiology”, sect. 1, vol. 2, American Physiological Society, Bethesda, pp 423–507.

    Google Scholar 

  • Hulliger, M., 1984, The mammalian muscle spindle and its central control Rev. Physiol. Bioch. Pharmacol., 101: 110 pp.

    Google Scholar 

  • Jendrassik, E., 1883, Beiträge zur Lehre von den Sehnenreflexen, Statist Archiv für Klin. Med., 33: 177–199.

    Google Scholar 

  • Laporte, Y., 1978, The motor innervation of the mammalian muscle spindle, in: Porter R., Ed., Studies in Neurophysiology presented to McIntyre A.K., Cambridge University Press, pp 45–59.

    Google Scholar 

  • Laporte, Y., 1979, Innervation of cat muscle spindles by fast-conducting skeletomotor fibres, in: Asanuma H., Wilson V.J., Eds., “Integration in the nervous system”, Igaku-Shoin, Tokyo, pp 3–12.

    Google Scholar 

  • Lundberg, A., Winsbury, G., 1960, Selective adequate activation of large afferents of muscle spindles and golgi tendon organs, Acta Physiol Scand., 49: 155–164.

    Article  PubMed  CAS  Google Scholar 

  • McCloskey, D. I., 1978, Kinesthetic sensibility, Physiol Rev., 58: 768–820.

    Google Scholar 

  • Matthews, P. B. C. 1972, Mammalian muscle receptors and their central action, Monographs of the Physiological Society, Edward Arnold Ldt., London, 630 pp.

    Google Scholar 

  • Matthews, P. B. C., 1977, Muscle afferents and kinaesthesia, British Med. Bull 33: 137–142.

    CAS  Google Scholar 

  • Matthews, P. B. C., 1981a, Evolving views on the internal operation and functional role of the muscle spindle, J. Physiol., 320: 1–30.

    PubMed  CAS  Google Scholar 

  • Matthews, P. B. C., 1981b, Muscles spindles: their messages and their motor supply, in: Brookhart, J.M., Mountcastle, V.B., and Brooks, Y.B., Eds., “Motor control, part 1, Handbook of Physiology”, sect 1, vol. 2, American Physiological Society, Bethesda, pp 189–228.

    Google Scholar 

  • Murthy, K. S. K., 1978, Vertebrate fusimotor neurons and their influences on motor behavior, Prog. in Neurobiol, 11: 249–307.

    Article  CAS  Google Scholar 

  • Normell, L. A., and Wallin, B. G., 1974, Sympathetic skin nerve activity and skin temperature changes in man, Acta Physiol. Scand., 91: 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Paillard, J., 1955, Réflexes et régulations d’origine proprioceptive chez l’Homme, Etude neurophysiologique et psychophysiologique, Thèse de Doctorat d’Etat, Arnette, Paris, 293 pp.

    Google Scholar 

  • Paillard, J., 1959, Functional organization of afferent innervation studies in man by monosynaptic testing, Am. J. Phys. Med., 38: 239–247.

    PubMed  CAS  Google Scholar 

  • Prochazka, A., and Wand, P., 1981, Independence of fusimotor and skeletomotor systems during voluntary movement, in.: Taylor, A., and Prochazka, A., Eds., “Muscle receptors and movement”, McMillan Ldt., London, pp 229–243.

    Google Scholar 

  • Prochazka, A., and Hulliger, M., 1983, Muscle afferent function and its significance for motor control mechanisms during voluntary movement in cat, monkey and man, in: Desmedt, J.E., Ed., “Motor control mechanisms in health and disease”, Raven Press, New York, pp 93–132.

    Google Scholar 

  • Ribot, E., Roll, J. P., and Vedel, J. P., 1986, Efferent discharges recorded from single skeletomotor and fusimotor in man, J. Physiol., 375: 251–268.

    PubMed  CAS  Google Scholar 

  • Roll, J. P., and Vedel, J. P., 1982, Kinaesthetic role of muscle afferents in man, studied by tendon vibration and microneurography, Exp. Brain Res., 47: 177–190.

    Article  PubMed  CAS  Google Scholar 

  • Ruffini, A., 1898, On the minute anatomy of the neuromuscular spindles of the cat, and on their physiological significance, J. Physiol., 23: 190–208.

    PubMed  CAS  Google Scholar 

  • Stuart, D. G., Mosher, C. G., Gerlach, R. L., and Reinking, R. M., 1970, Selective activation of la afferents by transient muscle stretch, Exp. Brain Res., 10: 177–187.

    Google Scholar 

  • Sundlof, G., and Wallin, B. G., 1977, The variability of muscle nerve sympathetic activity in resting recumbent man, J. Physiol. 272: 383–397.

    PubMed  CAS  Google Scholar 

  • Taylor, A., and Appenteg, A., 1981, Distinctive modes of static and dynamic fusimotor drive in jaw muscles, in: Taylor, A., Prochazka, A., Eds., “Muscle receptors and movement”, McMillan, London, pp 179–192.

    Google Scholar 

  • Trott, J. R., 1976, The effect of low amplitude vibration on the discharge of fusimotor neurons in the decerebrate cat, J. Physiol., 255: 635–650.

    PubMed  CAS  Google Scholar 

  • Vallbo, A. B., 1971, Muscle spindle response at the onset of voluntary isometric contractions in man, Time difference between fusimotor and skeletomotor effects, J. Physiol., 218: 405–431.

    PubMed  CAS  Google Scholar 

  • Vallbo, A. B., 1974, Human muscle spindle discharge during isometric voluntary contractions, Amplitude relations between spindle frequency and torque, Acta Physiol Scand., 90: 303–318.

    Article  PubMed  CAS  Google Scholar 

  • Vallbo, A. B., and Hulliger, M., 1981, Independence of skeletomotor and fusimotor activity in man, Brain Res., 223: 176–180.

    Article  PubMed  CAS  Google Scholar 

  • Vallbo, A. B., Hagbarth, K. E., Torebjork, H. E., and Wallin, B. G., 1979, Somatosensory, proprioceptive and sympathetic activity in human peripheral nerves, Physiol. Rev., 59: 919–957.

    PubMed  CAS  Google Scholar 

  • Vedel, J. P., and Roll, J. P., 1983, Muscle spindle contribution to the coding of motor activities in man, in: Massion, J., Paillard, J., Schultz, W., and Wiesendanger, M., Eds., “Neural coding of motor performance”, Springer Verlag, Berlin, Heidelberg, New York, Exp. Brain Res., Suppl. 7, pp 253–265.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Springer Science+Business Media New York

About this chapter

Cite this chapter

Vedel, J.P., Roll, J.P. (1988). Modulating Processes of Single Fusimotor Fibre Discharge in Man. In: Gurfinkel, V.S., Ioffe, M.E., Massion, J., Roll, J.P. (eds) Stance and Motion. Springer, Boston, MA. https://doi.org/10.1007/978-1-4899-0821-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4899-0821-6_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4899-0823-0

  • Online ISBN: 978-1-4899-0821-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics