Advertisement

Analysis of the Pattern of Activity in “Knee Flexor” Motoneurons During Locomotion in the Cat

  • C. Perret
  • J.-M. Cabelguen
  • D. Orsal

Summary

During fictive locomotion of the thalamic cat, the pattern of membrane potential variations in motoneurons of the posterior biceps-semitendinosus muscle is complex. Periods of chloride dependent inhibition, alternating with excitatory periods, were identified during the second part of the flexor phase and in the mid-extensor phase. These excitatory and inhibitory influences were shown to be selectively controlled by tonic afferent inputs from the ipsilateral hindlimb. The results are discussed in relation with the organization of the central pattern generators for hindlimb and forelimb locomotor movements.

Keywords

Rectus Femoris Knee Flexor Membrane Potential Oscillation Inhibitory Synaptic Input Fictive Locomotion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arshavsky, Y. I., Orlovsky, G. N., Perret, C., 1986, Activity of rubrospinal neurons during locomotion and scratching, Behav. Brain Res., in press.Google Scholar
  2. Baev, K. V., Kostyuk P. G., 1982, Polarization of primary afferent terminals of lumbosacral cord elicited by the activity of spinal generator, Neuroscience. 7: 1401–1409.CrossRefGoogle Scholar
  3. Cabelguen, J. M., Orsal, D., Perret, C., and Zattara, M., 1981, Central pattern of forelimb and hindlimb locomotor activities in the cat, in: Szentagothai, J., Palkovits, M., and Hamori, J., eds., “Advances in physiological sciences”, vol. 1, Pergamon Press/ Akademiai Kiado, Budapest, pp. 199–211.Google Scholar
  4. Chandler, S. H., Baker, L. L., and Golberg, L. J., 1984, Characterisation of synaptic potentials in hindlimb extensor motoneurons during L-DOPA-induced fictive locomotion in acute and chronic spinal cats, Brain Res., 303: 91–100.PubMedCrossRefGoogle Scholar
  5. Coombs, J. S., Eccles, J. G, and Fatt, P., 1955, The specific ionic conductances and the ionic movements across the motoneuronal membrane that produce the inhibitory postsynaptic potential, J. Physiol., (Lond). 130: 326–373.PubMedGoogle Scholar
  6. Deliagina, T. G., Orlovsky, G. N., and Perret, G, 1981, Efferent activity during fictitious scratch reflex in the cat, J. Neurophysiol., 45: 595–604.PubMedGoogle Scholar
  7. Drew, T., and Rossignol, S., 1985, Forelimb responses to cutaneous nerve stimulation in intact cats, Brain Res., 329: 323–328.PubMedCrossRefGoogle Scholar
  8. Duysens, J., and Loeb, G. E., 1980, Modulation of ipsi and contralateral reflex responses in unrestrained walking cats, J. Neurophysiol. 44, 1024–1037.PubMedGoogle Scholar
  9. Edgerton, V. R., Grillner, S., Sjöström A., and Zangger, P. 1976, Central generation of locomotion in vertebrates, in: Herman R. M., Grillner S., Stein P., and Stuart D. G., eds., “Neural Control of Locomotion”, Plenum Press, New York, 439–464.Google Scholar
  10. Endberg, I., and Lundberg, A., 1969, An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion, Acta Physiol. Scand., 75: 614–630.CrossRefGoogle Scholar
  11. Feldman, A. G., and Orlovsky, G. N., 1975, Activity of interneurons mediating reciprocal Ia inhibition during locomotion, Brain Res., 84: 181–194.PubMedCrossRefGoogle Scholar
  12. Fleshman, J. W., Lev-Tov, A., and Burke, R. E., 1984, Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the synaptic basis of functional diversity, Exp. Brain Res., 54: 133–149.PubMedCrossRefGoogle Scholar
  13. Forssberg, H., 1981, Phasic gating of cutaneous reflexes during locomotion, in: Taylor A., Prochavska A., eds., “Muscle receptors and movement”, Macmillan, London, 403–412.Google Scholar
  14. Forssberg, H., and Grillner, S., 1973, The locomotion of the acute spinal cat injected with Clonidine i.V., Brain Res., 50: 184–186.PubMedCrossRefGoogle Scholar
  15. Forssberg, H., Grillner, S., and Halbertsma, J., 1980, The locomotion of the low spinal cat, I. Coordination within a hindlimb, Acta Physiol., Scand. 108: 269–281.CrossRefGoogle Scholar
  16. Forssberg, H., Grillner, S., and Rossignol, S., 1977, Phasic gain control of reflexes from dorsum of the paw during spinal locomotion, Brain Res., 132: 121–139.PubMedCrossRefGoogle Scholar
  17. Gambarian, P. P., Orlovsky, G. N., Protopopova, T. Y., Severin, F. V. and Shik, M. L., 1971, The activity of muscles during different gaits and adaptative changes of moving organs in family Felidae, Morphology and ecology of vertebrates, Proc. Inst. Zool. Acad. Sci. USSR. 48: 220–239.Google Scholar
  18. Grillner, S., 1981, Control of locomotion in bipeds, tetrapods, and fish, in: Brooks V. B., ed., “Handbook of physiology”, Sect I, vol. 2, Waverly Press, Baltimore, 1179–1236.Google Scholar
  19. Grillner, S., and Zangger, P., 1975, How detailed is the central pattern generation for locomotion, Brain Res., 88: 367–371.PubMedCrossRefGoogle Scholar
  20. Grillner, S., and Zangger, P., 1979, On the spinal generation of locomotion in the low spinal cat, Exp. Brain Res., 34: 241–261.PubMedCrossRefGoogle Scholar
  21. Grillner, S., and Zangger, P., 1984, The effect of dorsal root transection on the efferent motor pattern in the cat’s hindlimb during locomotion, Acta Phisiol. Scand., 120: 393–405.CrossRefGoogle Scholar
  22. Jordan, L. M., 1983, Factors determining motoneuron rhythmicity during fictive locomotion, in: Roberts A., Roberts B., eds., “Neural origin of rhythmic movements”, Cambridge University Press, Cambridge, 423–444.Google Scholar
  23. Lundberg, A., 1981, Half-centres revisited, in: Szentagothai J., Palkovits M., Hamori J., eds., “Advances in physiological sciences,” vol. 1; Pergamon Press/Akademiai Kiado, Budapest, 155–167.Google Scholar
  24. Orsal, D., Perret, G, and Cabelguen, J. M., 1986, Evidence of rhythmic inhibitory synaptic influences in hindlimb motoneurons during fictive locomotion in the thalamic cat, Exp. Brain Res., 64: 217–224.PubMedCrossRefGoogle Scholar
  25. Perret, G, 1983, Centrally generated pattern of motoneuron activity during locomotion in the cat, in: Roberts A., Roberts B., eds., “Neural origin of rhythmic movements”, Cambridge University Press, Cambridge, 405–422.Google Scholar
  26. Perret, G, 1986, Patterns of fore- and hindlimb motoneuron activity during fictive locomotion in the cat, in: Grillner S., Herman R., Stein P. S. G., Stuart D. G., eds.,“Neurobiology of vertebrate locomotion”, Macmillan Press, Basingstone, in press.Google Scholar
  27. Perret, G, and Cabelguen, J. M., 1976, Central and reflex participation in the timing of locomotor activations of a bifunctional muscle, the semi-tendinosus, in the cat, Brain Res., 106: 390–395.PubMedCrossRefGoogle Scholar
  28. Perret, C., and Cabelguen, J. M., 1980, Main characteristics of the hindlimb locomotor cycle in the decorticate cat with special reference to bifunctional muscles, Brain Res., 187: 333–352.PubMedCrossRefGoogle Scholar
  29. Rasmussen, S., Chan, A. K., and Goslow, G. E. Jr., 1978, The cat step cycle: electromyographic patterns for hindlimb muscles during posture and unrestrained locomotion, J. Morph., 155: 253–270.PubMedCrossRefGoogle Scholar
  30. Schomburg, E. D., Behrends, H. B., and Steffens, H., 1981, Changes in segmental and propriospinal reflex pathways during spinal locomotion, in: Taylor A., Prochaska A., eds., “Muscle receptors and movements”, Macmillan, Londonn, 413–425.Google Scholar
  31. Shefchyk, S. J., and Jordan, L. M., 1985, Motoneuron input-resistance changes during fictive locomotion produced by stimulation of the mesencephalic locomotor region, J. Neurophysiol., 54: 1101–1108.PubMedGoogle Scholar
  32. Shik, M. L., and Orlovsky, G. N., 1976, Neurophysiology of locomotor automatism, Physiol., Rev., 56: 465–501.Google Scholar
  33. Wentink, G. H., 1976, The action of the hind limb musculature of the dog in walking, Acta anat. 96: 70–80.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • C. Perret
    • 1
  • J.-M. Cabelguen
    • 1
  • D. Orsal
    • 1
  1. 1.Département de Neurophysiologie comparéeInstitut des NeurosciencesParis, Cedex 05France

Personalised recommendations