Temperature Dependence of the Longwavelength Absorption Band of the Reaction Center of Rhodopseudomonas viridis

  • Youngdo Won
  • Richard A. Friesner
Part of the NATO ASI Series book series (NSSA, volume 149)


In a series of previous papers(1,2), we have constructed a vibronic coupling model for the excited states of the chromophores in the reaction center (RC) of photosynthetic bacteria. The model has been used to compute various optical properties (absorption, circular dichroism, polarized absorption, holeburning spectra) of the reaction center pigments; a particular focus has been investigation of the low energy Q y exciton component of the special pair bacteriochlorophylls. Many of the intramolecular vibrational parameters (frequencies, excited state geometry shifts) are obtained a priori from monomer experiments, reducing the parametric flexibility associated with phenomenological lineshape functions. Good agreement with experiment has been obtained by varying a limited set of electronic parameters and by including an intermolecular mode for the special pair dimer P.


Vibronic Coupling Energy Absorption Band Exciton Component Intermolecular Mode Wavelength Shoulder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Won, Y. and Friesner, R. A. (1987) Proc. Natl. Acad. Sci. USA 84, 5511–5515.PubMedCrossRefGoogle Scholar
  2. 2.
    Won, Y. and Friesner, R. A. J. Phys. Chem. to be published.Google Scholar
  3. 3.
    Holton, D., private communication.Google Scholar
  4. 4.
    Lagos, R. and Friesner, R. (1984) J. Chem. Phys. 81, 5899–5909.CrossRefGoogle Scholar
  5. 5.
    Won, Y., Lagos, R. and Friesner, R. (1986) ibid. 84, 6567–6574.Google Scholar
  6. 6.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1984) J. Mol. Biol. 180, 385–398.PubMedCrossRefGoogle Scholar
  7. 7.
    Gouterman, M. (1961) J. Mol. Spectrosc. 6, 138–163.CrossRefGoogle Scholar
  8. 8.
    Platenkamp, R. J., Den Blanken, H. J. and Hoff, A. J. (1980) Chem. Phys. Lett. 76, 35–41.CrossRefGoogle Scholar
  9. 9.
    Even, U., Magen, J. and Jortner, J. (1982) ibid. 88, 131–134.Google Scholar
  10. 10.
    Vermeglio, A. and Paillotin, G. (1982) Biochim. Biophys. Acta 681, 32–40.CrossRefGoogle Scholar
  11. 11.
    Shuvalov, V. A.; Asadov, A. A. (1979) ibid. 545, 296–308.Google Scholar
  12. 12.
    Phillipson, K. D.; Sauer, K. (1973) Biochemistry 12, 535–539.CrossRefGoogle Scholar
  13. 13.
    Shuvalov, V. A. and Klevanik, A. V. (1983) FEBS Lett. 160, 51–55.CrossRefGoogle Scholar
  14. 14.
    Tiede, D. M., Kellogg, E. and Breton, J. Biochim. Biophys. Acta, to be published.Google Scholar
  15. 15.
    Hoff, A. J., this volume.Google Scholar
  16. 16.
    Hayes, J. M. and Small, G. J. (1986) J. Phys. Chem. 90, 4928–4931.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Youngdo Won
    • 1
  • Richard A. Friesner
    • 1
  1. 1.Department of ChemistryThe University of Texas at AustinAustinUSA

Personalised recommendations