The Spectral Properties of Chlorophyll and Bacteriochlorophyll Dimers; a Comparative Study

  • A. Scherz
  • V. Rosenbach-Belkin
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

Reaction centers (RCs) of photosynthetic bacteria generally contain four bacteriochlorophylls (Bchls) and two bacteriopheophytins (Bphs) that have three main absorption bands in the near infrared (NIR) (1). The transitions occur at 860–870, 803–814 and 760 nm in species that contain Bchla, and at 960–1000, 820–850 and 790–810 nm in species that contain Bchlb. They are all optically active with a net positive rotation for the lowest energy transition (2). The total oscillator strength in the NIR region is larger by 10–20% than the oscillator strength of the chromophore extract in that region (3). In the visible region, the reaction centers absorb at ≈ 600 nm with a double Cotton effect (2) and an oscillator strength which is smaller than that of the in vitro extract by ≈ 10% (3). There is another band at ≈ 540 nm, which splits at low temperature. A strong absorption with a complicated circular dichroism pattern is seen in the UV; Its oscillator strength is weaker and it is red shifted relative to the maximum absorption of the pigment extract in that region.

Keywords

Oscillator Strength Transition Dipole Photosynthetic Bacterium Soret Band Special Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Okamura, M.Y., Feher, G. and Nelson, N. in: Photosynthesis; Energy conversion in Plants and Bacteria, ed. Govindjee, Academic Press, N.Y. (1982), 195. and photosynthetic bacteria, ed. Govindjee, Academic Press, N.Y. (1982), 331.Google Scholar
  2. 2.
    Reed, D.W. and Ke, B. (1973) J. Biol. Chem. 248, 3041.PubMedGoogle Scholar
  3. 3.
    Scherz, A. and Parson, W.W. (1984) Biochim. Biophys. Acta 766, 666.CrossRefGoogle Scholar
  4. 4.
    Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) Nature 318, 618.PubMedCrossRefGoogle Scholar
  5. 5. a.
    Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C. (1987) Proc. Natl. Acad. Sci. USA 84, 5730.PubMedCrossRefGoogle Scholar
  6. b.
    Allen, J.P., Feher, G., Yeates, T.O., Komiya, H. and Rees, D.C., ibid 6162.Google Scholar
  7. 6.
    Parson, W.W., Warshel, A. and Scherz, A. in: “Antennas and Reaction Centers of Photosynthetic Bacteria Structure, Interactions and Dynamics” ed. Michele-Beyerle, M.E., Springer-Verlag, pp. 122.Google Scholar
  8. 7.
    Knapp, E.W., Scherer, P.O.J., Fischer, S.F.,(1986) Biochim. Biophys. Acta 852, 295.CrossRefGoogle Scholar
  9. 8.
    Hoff, A., Lous, E.J., Moehl, K.W. and Dijkman, J.A., (1985) Chem. Phys. Lett. 114, 39.CrossRefGoogle Scholar
  10. 9.
    Parson, W.W. and Warshel, A. (1987) J. Am. Chem. Soc. 109, 6154.CrossRefGoogle Scholar
  11. 10.
    Warshel, A., (1979) J. AM.Chem. Soc. 101, 744.CrossRefGoogle Scholar
  12. 11.
    Plato, M., Trankle, E., Lubitz, W., Lendzian, F. and Mobius, K. (1986) Chem. Phys. 107, 185.CrossRefGoogle Scholar
  13. 12.
    Prince, R.C. Tiede, D.M., Thornber, J.P. and Dutton, P.L. (1977) Biochim. Biophys. Acta, 462, 467.PubMedCrossRefGoogle Scholar
  14. 13.
    Rosenbach-belkin, V., Braun, P. Kovatch, P., Scherz, A. (1988) in “Photosynthetic Light-HarvestingSystems; Structure and Function.” eds. Scheer, H. and Schneider.000.Google Scholar
  15. 14.
    Bolt, J. (1980) Thesis, Univ. California, Berkeley.Google Scholar
  16. 15.
    Wsielewsky, M.R and Svec, W.A. (1980) J. Org. Chem. 45, 1969.CrossRefGoogle Scholar
  17. 16.
    Sauer, K. and Austin, L.A., Biochem. (1978) 17, 2012.Google Scholar
  18. 17.
    Scherz, A., Rosenbach-Belkin, V. (1987) submitted.Google Scholar
  19. 18.
    Scherz, A., Rosenbach, V. and Malkin, S. in: Antennas and reaction centers of photosynthetic bacteria, ed. M.E. Michel-Beyerle, Springer Verlag (1985), 314.Google Scholar
  20. 19.
    Weiss, R. (1972), J. Mol. Spect.Google Scholar
  21. 20.
    Singh, J. and Thornton, J.M. (1985) FEBS Lett. 191, 1–6.CrossRefGoogle Scholar
  22. 21.
    Burley, S.K. and Petsko, G.A. (1985) Science 229, 23–28.PubMedCrossRefGoogle Scholar
  23. 22.
    Burley, S.K. and Petsko, G.A. (1986) J. Am. Chem. Soc. 86, 7995–8001.CrossRefGoogle Scholar
  24. 23.
    Thomas, K.A., Smith, G.M., Thomas, T.B. and Feldman, R.J. (1982) Proc. NAtl. Acad. Sci. USA 79, 4843–4847.PubMedCrossRefGoogle Scholar
  25. 24.
    W. Kauzmann, Quantum Chemistry, Ch. 13 (1957), Academic Press.Google Scholar
  26. 25.
    Philipson, K.D. and Sauer, K. (1971) J. chem. Phys. 75,1440.CrossRefGoogle Scholar
  27. 26.
    Simpson, T.W. and Paterson, D.L. (1957), J. Chem. Phys. 26, 588.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • A. Scherz
    • 1
  • V. Rosenbach-Belkin
    • 1
  1. 1.Department of BiochemistryThe Weizmann Institute Of ScienceRehovotIsrael

Personalised recommendations