Advertisement

The Effect of an Electric Field on the Charge Recombination Rate of D+QA → DQA in Reaction Centers from Rhodobacter sphaeroides R-26

  • G. Feher
  • T. R. Arno
  • M. Y. Okamura
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

The name of the game in photosynthesis is effective charge separation across the plasma membrane of photosynthetic organisms. The main focus of this conference has been to understand this process quantitatively. In a sense one can view the different contributions from spectroscopy, x-ray structure determinations, dynamics, the effect of mutagenesis etc. as providing the experimental and theoretical frameworks upon which electron transfer (ET) theories are built. To critically test the validity of ET theories, it is important to devise experiments that focus on particular predictions of the theory. This has been done in the present work whose aim was to test the free energy dependence of electron transfer.

Keywords

Electron Transfer Reaction Center Applied Voltage Applied Electric Field Charge Recombination 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. W. Parson, The role of P870 in bacterial photosynthesis, Biochim. Biophys. Acta 153: 248–259 (1967).Google Scholar
  2. 2.
    J. D. McElroy, D. C. Mauzerall, and G. Feher, Characterization of primary reactants in bacterial photosynthesis. II. Kinetic studies of the light-induced EPR signal (g=2.0026) and the optical absorbance changes at cryogenic temperatures, Biochim. Biephys. Acta 333: 261–277 (1974).CrossRefGoogle Scholar
  3. 3.
    E. S. P. Hsi, and J. R. Bolton, Flash photolysis-electron spin resonance study of the effect of o-phenanthroline and temperature on the decay time of the ESR signal B1 in reaction-center preparations and chromatophores of mutant and wild strains of Rhodopseudomonas sphaeroides and Rhodospirillun rubrum, Biochim. Biophys. Acta, 347:126–133 (1974).PubMedCrossRefGoogle Scholar
  4. 4.
    P. A. Loach, M. Kung, and B. J. Hales, Characterization of the phototrap in photosynthetic bacteria, Ann. N. Y. Acad. Sci. 244: 297–319 (1975).PubMedCrossRefGoogle Scholar
  5. 5.
    B. J. Hales, Temperature dependency of the rate of electron transport as a monitor of protein motion, Biophys. J. 16: 471–480 (1976).PubMedCrossRefGoogle Scholar
  6. 6.
    L. E. Morrison, and P. A. Loach, Complex charge recombination kinetics of the phototrap in Rhodospirillum rubrum, Photochem. Photobiol., 27:751–757 (1978).CrossRefGoogle Scholar
  7. 7.
    T. Mar, C. Vadeboncoeur, and G. Gingras, Different temperature dependencies of the charge recombination reaction in photoreaction centers isolated from different bacterial species, Biochim. Biophys. Acta 724: 317–322 (1983).CrossRefGoogle Scholar
  8. 8.
    M. R. Gunner, D. M. Tiede, R. C. Prince, and P. L. Dutton, Quinones as prosthetic groups in membrane electron-transfer proteins 1: Systematic replacement of the primary ubiquinone of photochemical reaction centers with other quinones, in: “Function of Quinones in Energy Conserving Systems,” B. L. Trumpower, ed., Academic Press, Inc., New York, pp. 265–269 (1982).Google Scholar
  9. 9.
    D. Kleinfeld, M. Y. Okamura, and G. Feher, Electron-transfer kinetics in photosynthetic reaction centers cooled to cryogenic temperatures in the charge-separated state: evidence for light-induced structural changes, Biochemistry 23: 5780–5786 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    M. R. Gunner, D. E. Robertson, and P. L. Dutton, Kinetic studies on the reaction center protein from Rhodopseudomonas sphaeroides: The temperature and free energy dependence of electron transfer between various quinones in the QA site and the oxidized bacteriochlorophyll dimer, J. Phys. Chem. 90: 3783–3795 (1986).CrossRefGoogle Scholar
  11. 11.
    G. Feher, M. Y. Okamura, and D. Kleinfeld, Electron transfer reactions in bacterial photosynthesis: charge recombination kinetics as a structure probe, in: “Protein Structure: Molecular and Electronic Reactivity,” Robert Austin, Ephraim Buhks, Britton Chance, Don DeVault, P. Leslie Dutton, Hans Frauenfelder and Vitallii I. Goldanskii, eds., Springer Verlag, New York, pp. 399–421 (1987).Google Scholar
  12. 12.
    Z. D. Popovic, G. J. Kovacs, P. S. Vincent, G. Alegria, and P. L. Dutton, Electric field dependence of recombination kinetics in reaction centers of photosynthetic bacteria, Chem. Phys. 110: 227–237 (1986).CrossRefGoogle Scholar
  13. 13.
    R. A. Marcus, On the theory of oxidation-reduction reactions involving electron transfer. I, J. Chem. Phys. 24: 966–978 (1956).CrossRefGoogle Scholar
  14. 14.
    J. J. Hopfield, Electron transfer between biological molecules by thermally activated tunneling, Proc. Natl. Acad. Sci. USA 71: 3640–3644 (1974).PubMedCrossRefGoogle Scholar
  15. 15.
    J. Ulstrup, and J. Jortner, The effect of intramolecular quantum modes on free energy relationships for electron transfer reactions, J. Chem. Phys. 63: 4358–4368 (1975).CrossRefGoogle Scholar
  16. 16.
    J. Jortner, Temperature dependent activation energy for electron transfer between biological molecules, J. Chem. Phys. 64:4860–4867 (1976).CrossRefGoogle Scholar
  17. 17.
    J. Jortner, Dynamics of the primary events in bacterial photosynthesis, J. Am. Chem. Soc. 102:6676–6686 (1980).CrossRefGoogle Scholar
  18. 18.
    A. Sarai, Possible role of protein in photosynthetic electron transfer, Biochim. Biophys. Acta 589:71–83 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    T. Kakitani, and H. Kakitani, A possible new mechanism of temperature dependence of electron transfer in photosynthetic systems, Biochim. Biophys. Acta 635: 498–514 (1981).PubMedCrossRefGoogle Scholar
  20. 20.
    T. Kakitani, and N. Mataga, New energy gap laws for the charge separation process in the fluorescence quenching reaction and the charge recombination process of ion pairs produced in polar solvents, J. Phys. Chem. 89: 8–10 (1985).CrossRefGoogle Scholar
  21. 21.
    D. D. DeVault, “Quantum-Mechanical Tunnelling in Biological Systems,” Cambridge University Press (1984).Google Scholar
  22. 22.
    R. A. Marcus, and N. Sutin, Electron transfers in chemistry and biology, Biochim. Biophys. Acta 811: 265–302 (1985).CrossRefGoogle Scholar
  23. 23.
    J. R. Miller, L. T. Calcaterra, and G. L. Class, Intramolecular long-distance electron transfer in radical anions. The effects of free energy and solvent on the reaction rates, J. Am. Chem. Soc. 106: 3047–3049 (1984).CrossRefGoogle Scholar
  24. 24.
    J. R. Miller, J. V. Beitz, and R. K. Huddleston, Effect of free energy on rates of electron transfer between molecules, J. Am. Chem. Soc. 106: 5057–5068 (1984).CrossRefGoogle Scholar
  25. 25.
    A. D. Joran, B. A. Leland, P. M. Felker, A. H. Zewail, J. J. Hopfield, and P. B. Dervan, Effect of exothermicity on electron transfer rates in photosynthetic molecular models, Nature 327: 508–511 (1987).CrossRefGoogle Scholar
  26. 26.
    A. Gopher, Y. Blatt, M. Schönfeld, M. Y. Okamura, G. Feher, and M. Montai, The effect of an applied electric field on the charge recombination kinetics in reaction centers reconstituted in planar lipid bilayers, Biophys. J. 48: 311–320 (1985).PubMedCrossRefGoogle Scholar
  27. 27.
    T. Arno, A. Gopher, M. Y. Okamura, and G. Feher, Dependence of the recombination rate D+QA → DQA on the electric field applied to reaction centers from Rb. sphaeroides R-26 incorporated into a planar lipid bilayer, Biophys. J. (Abstract), February 1988, in press.Google Scholar
  28. 28.
    P. H. McPherson, T. Arno, M. Y. Okamura, and G. Feher, pH-Dependence of the charge recombination rate D+QA → DQA in reaction centers from Rb. sphaeroides R-26, Biophys. J. (Abstract), February 1988, in press.Google Scholar
  29. 29.
    M. Y. Okamura, R. A. Isaacson, and G. Feher, Primary acceptor in bacterial photosynthesis: obligatory role of ubiquinone in photoactive reaction centers of Rhodopseudomonas sphaeroides, Proc. Natl. Acad. Sci. USA 72:3491–3495 (1975).PubMedCrossRefGoogle Scholar
  30. 30.
    H. Arata, and W. W. Parson, Delayed fluorescence from Rhodopseudomonas sphaeroides reaction centers enthalpy and free energy changes accompanying electron transfer from P-870 to quinones, Biochim. Biophys. Acta 638: 201–209 (1981).CrossRefGoogle Scholar
  31. 31.
    W. W. Parson, and B. Ke, Primary photochemical reactions, in: “Photosynthesis,” Vol. I, Govindjee, ed., Academic Press, Inc., New York, pp. 331–385 (1982).CrossRefGoogle Scholar
  32. 32.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors, Proc. Natl. Acad. Sci. USA 84: 5730–5734 (1987).PubMedCrossRefGoogle Scholar
  33. 33.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya, and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: The protein subunits, Proc. Natl. Acad. Sci. USA 84: 6162–6166 (1987).PubMedCrossRefGoogle Scholar
  34. 34.
    H. W. Trissl, Spatial correlation between primary redox components in reaction centers of Rhodopseudomonas sphaeroides measured by two electrical methods in the nanosecond range, Proc. Natl. Acad. Sci. USA 80: 7173–7177 (1983).PubMedCrossRefGoogle Scholar
  35. 35.
    H. W. Trissl, (personal communication).Google Scholar
  36. 36.
    P. Maroti, C. A. Wraight, Light induced proton binding-unbinding dynamics in reaction centers from Rhodobacter sphaeroides, in: “Progress in Photosynthesis Research,” Vol. 2, p. II.6.401, J. Biggins, ed., Martinus Nijhoff, Boston (1986).Google Scholar
  37. 37.
    P. H. McPherson, M. Y. Okamura, G. Feher, and M. Schönfeld, Light induced proton uptake by RCs from R. sphaeroides R-26.1, Biophys. J. (Abstr.), p. 125a (1987).Google Scholar
  38. 38.
    H. Eyring, J. Walter, and G. E. Kimball, “Quantum Chemistry,” J. Wiley and Sons, Inc., New York (1944).Google Scholar
  39. 39.
    M. Montai, Formation of bimolecular membranes from lipid monolayers, Methods Enzymol. 32:545–554 (1974).CrossRefGoogle Scholar
  40. 40.
    H. Schindler, Formation of planar bilayer from artificial or native membrane vesicles, FEBS (Fed. Eur. Biochem. Soc.) Lett. 122:77–79 (1980).CrossRefGoogle Scholar
  41. 41.
    M. Schönfeld, M. Montai, and G. Feher, Functional reconstitution of photosynthetic reaction centers in planar lipid bilayers, Proc. Natl. Acad. Sci. USA 76: 6351–6355 (1979).PubMedCrossRefGoogle Scholar
  42. 42.
    Y. Kagawa, and E. Racker, Partial resolution of the enzymes catalyzing oxidative phospho-rylation: XXV. Reconstitution of vesicles catalyzing 32P1−ATP exchange, J. Biol. Chem. 246: 5477–5487 (1971).Google Scholar
  43. 43.
    N. K. C. Packham, P. Packham, P. Mueller, D. M. Tiede, and P. L. Dutton, Reconstitution of photochemically-active centers in planar phospholipid membranes: light induced electric currents under voltage clamped conditions, FEBS (Fed. Eur. Biochem. Soc.) Lett. 110: 101–106 (1980).CrossRefGoogle Scholar
  44. 44.
    G. Feher and M. Y. Okamura, Structure and function of the reaction centers from Rhodopseudomonas sphaeroides, in “Advances in Photosynthesis Research,” Vol. II, pp. 155-164, C. Sybesma, ed., M. Nijhoff/W. Junk, The Netherlands (1984).Google Scholar
  45. 45.
    M. Bixon, and J. Jortner, Coupling of protein modes to electron transfer in bacterial photosynthesis, J. Phys. Chem. 90: 3795–3800 (1986).CrossRefGoogle Scholar
  46. 46.
    M. Lösche, G. Feher, and M. Y. Okamura, The Stark effect in reaction centers from Rhodobacter sphaeroides R-26 and Rhodopseudomonas viridis, Proc. Natl. Acad. Sci. USA, 84:7537–7541 (1987).PubMedCrossRefGoogle Scholar
  47. 47.
    T. O. Yeates, H. Komiya, D. C. Rees, J. P. Allen, and G. Feher, Structure of the reaction center from Rhodobacter sphaeroides R-26: Membrane-protein interactions, Proc. Natl. Acad. Sci. USA 84: 6438–6442 (1987).PubMedCrossRefGoogle Scholar
  48. 48.
    A. M. Kuznetsov, and J. Ulstrup, The effect of temperature and transmembrane potentials on the rates of electron transfer between membrane-bound biological redox components, Biochim. Biophys. Acta 636: 50–57 (1981).PubMedCrossRefGoogle Scholar
  49. 49.
    S. H. White, Temperature-dependent structural changes in planar bilayer membranes: solvent “freeze-out”, Biochim. Biophys. Acta 356: 8–16 (1974).PubMedCrossRefGoogle Scholar
  50. 50.
    T. Arno, P. H. McPherson, and G. Feher (unpublished results).Google Scholar
  51. 51.
    R. K. Clayton, Effects of dehydration on reaction centers from Rhodopseudomonas sphaeroides, Biochim. Biophys. Acta 504:255–264 (1978).PubMedCrossRefGoogle Scholar
  52. 52.
    B. Sakman and E. Neher (eds.) “Single Channel Recording,” Plenum Press, New York (1983).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • G. Feher
    • 1
  • T. R. Arno
    • 1
  • M. Y. Okamura
    • 1
  1. 1.University of California, San DiegoLa JollaUSA

Personalised recommendations