Advertisement

Temperature and -ΔG° Dependence of the Electron Transfer to and from QA in Reaction Center Protein from Rhodobacter sphaeroides

  • M. R. Gunner
  • P. Leslie Dutton
Chapter
Part of the NATO ASI Series book series (NSSA, volume 149)

Abstract

Photosynthetic reaction center proteins (RC) have provided an important system for the study of biological electron transfer mechanisms. Initially, the investigation focused simply on the oxidation-reduction of the cofactors that function as donor and accepter. As details of both the reaction pathways and protein structure emerge, attention can now turn toward the role of the protein matrix in electron transfer. This not only provides the scaffolding for the redox sites, but also a medium that should be energetically coupled to the electron transfer event. On a broader front, the reactions occurring in the RC, with its defined structure and characterized reactions, offer a unique opportunity to test current, general theoretical models for electron transfer.

Keywords

Electron Transfer Reaction Center Electron Transfer Reaction Electron Transfer Rate Reorganization Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeVault, D. and Chance, B. Biophys. J. 6; 825–847 (1966).PubMedCrossRefGoogle Scholar
  2. 2.
    Kihara, T. and McCray, J. A. Biochim. Biophys. Acta. 292 297–309 (1973).PubMedCrossRefGoogle Scholar
  3. 3.
    Dutton, P. L. and Prince R. C. “The Photosynthetic Bacteria”; Clayton, R. K. and Sistrom W. R. (eds); Plenum, N.Y., London; 525–570 (1978).Google Scholar
  4. 4.
    Dutton, P. L. “Encyclopedia of Plant Physiology” New Series Vol. 19; Staechelein, L. A. and Arntzen, C. J. (eds); Springer Verlag, N.Y., Berlin; 197–237 (1986).Google Scholar
  5. 5.
    “Tunneling in Biological Systems”; Chance, B., DeVault, D., Frauenfelder, H., Marcus, R. A., Schrieffer, J. R., and Sutin, N. (eds); Acad. Press; N.Y., London (1979).Google Scholar
  6. 6.
    “Protein Structure, Molecular and Electronic Reactivity” Austin, R., Buhks, E., Chance, B., DeVault, D., Dutton, P. L., Frauenfelder, H. and Goldanskii, V. I. (eds); Springer Verlag, N.Y., Berlin (1987).Google Scholar
  7. 7.
    Jortner, J. Biochim. Biophys. Acta. 594; 193–230 (1980).PubMedCrossRefGoogle Scholar
  8. 8.
    Marcus, R. A. and Sutin, N. Biochim. Biophys. Acta. 811; 265–322(1985).CrossRefGoogle Scholar
  9. 9.
    Hopfield, J. J. Proc. Natl. Acad. Sci. U.S. 71; 3640–3644 (1974).CrossRefGoogle Scholar
  10. 10.
    Warshel, A. Proc. Natl. Acad. Sci. U.S. 77; 3105–3109 (1980).CrossRefGoogle Scholar
  11. 11.
    Sarai, A. Chem. Phvs. Lett. 63; 360–366 (1979).CrossRefGoogle Scholar
  12. 12.
    Bixon, M. and Jortner, J. FEBS Letts. 200; 303–308 (1986).CrossRefGoogle Scholar
  13. 13.
    Knapp, E. W. and Fischer, S. F. J. Chem. Phys. 87; 3880–3887 (1987).CrossRefGoogle Scholar
  14. 14.
    Woodbury, N. W. T., Becker, M., Middendorf, D. and Parson, W. W. Biochemistry 24; 7516–7521 (1985).PubMedCrossRefGoogle Scholar
  15. 15.
    Martin J.-L., Breton, J., Hoff, A. J., Migus, A. and Antonetti, A. Proc. Natl. Acad. Sci. U.S. 83; 957–961 (1986).CrossRefGoogle Scholar
  16. 16.
    Kirmaier, C, Holten, D. and Parson, W. W. Biochim. Biophys. Acta. 810; 33–48 (1985).CrossRefGoogle Scholar
  17. 17.
    Clayton, R. K. and Yau, H. F. Biophys. J. 12; 867–881 (1972).PubMedCrossRefGoogle Scholar
  18. 18.
    Clayton, R. K. Biochim. Biophys. Acta. 504; 255–264 (1978).PubMedCrossRefGoogle Scholar
  19. 19.
    Hsi, E. S. P. and Bolton, J. R. Biochim. Biophys. Acta. 347; 126–133 (1974).PubMedCrossRefGoogle Scholar
  20. 20.
    McElroy, J. D., Mauzerall, D. C. and Feher, G. Biochim. Biophys. Acta. 333; 261–277 (1974).PubMedCrossRefGoogle Scholar
  21. 21.
    Marcus, R. A. J. Chem. Phys. 24; 966–978 (1956).Google Scholar
  22. 22.
    Marcus, R. A. Ann. Rev. Phys. Chem. 15; 155–196 (1964).CrossRefGoogle Scholar
  23. 23.
    Ulstrup, J. and Jortner, J. J. Chem. Phvs. 63; 4358–4368 (1975).CrossRefGoogle Scholar
  24. 24.
    Fischer, S. F. and van Duyne, R. P. Chem. Phys. 26; 9–15 (1977).CrossRefGoogle Scholar
  25. 25.
    Jortner, J. J. Chem. Phys. 64; 4860–4867 (1976).CrossRefGoogle Scholar
  26. 26.
    Gunner, M. R., Robertson, D. E. and Dutton, P. L. J. Chem. Phvs. 90; 3783–3795 (1985).Google Scholar
  27. 27.
    Okamura, M. Y., Isaacson, R. A. and Feher, G. Proc. Natl. Acad. Sci. U.S. 72; 3492–3496 (1975).CrossRefGoogle Scholar
  28. 28.
    Gunner, M. R., Tiede, D. M., Prince, R. C. and Dutton, P. L. in “Functions of Quinones in Energy Conserving Systems”; Trumpower, B. L. (ed); Acad. Press; N.Y., London; 271–276 (1982).Google Scholar
  29. 29.
    Woodbury, N. W. T., Parson, W. W., Gunner, M. R., Prince, R. C. and Dutton, P. L. Biochim. Biophys. Acta. 851; 6–22 (1986).PubMedCrossRefGoogle Scholar
  30. 30.
    Gunner, M. R. and Dutton, P. L. Biochim. Biophys. Acta. Submitted (1988).Google Scholar
  31. 31.
    Liang, Y., Nagus, D. K., Hochstrasser, R. M., Gunner, M. R. and Dutton, P. L. Chem. Phys. Letts. 84; 236–240 (1981).CrossRefGoogle Scholar
  32. 32.
    Gunner, M. R., Liang, Y., Nagus, D. K., Hochstrasser, R. M. and Dutton P. L. Biophys. J. 37; 226a (1982).Google Scholar
  33. 33.
    Schenck, C. C., Blankenship, R. E. and Parson, W. W. Biochim. Biophys. Acta. 680; 44–59 (1982).CrossRefGoogle Scholar
  34. 34.
    Chidsey, C. E. D., Kirmaier, C., Holten, D. and Boxer, S. G. Biochim. Biophys. Acta.; 424–437 (1984).Google Scholar
  35. 35.
    Cho, H. M., Mancino, L. J. and Blankenship, R. E. Biophvs. J. 45; 445–461 (1984).CrossRefGoogle Scholar
  36. 36.
    Mauzerall, D. in “Biological Events Probes by Ultrafast Lasers Spectroscopy”; Alfano, R. R. (ed); Acad. Press; N.Y., London; 215–235 (1978).Google Scholar
  37. 37.
    DeVault, D. Q. Revs. Biophys. 13; 387–564 (1980).CrossRefGoogle Scholar
  38. 38.
    Hadzi, D., Sheppard, N. J. Am. Chem. Soc. 13; 5460–5465 (1951).CrossRefGoogle Scholar
  39. 39.
    Tripathi, G. N. R. J. Chem. Phvs. 74; 6044–6049 (1981).CrossRefGoogle Scholar
  40. 40.
    Go, N., Noguti and Nishikawa, T. Proc. Natl. Acad. Sci. U.S. 80; 3696–3700 (1983).CrossRefGoogle Scholar
  41. 41.
    Miller, J. R., Beitz, J. V. and Huddleston, R. K. J. Amer. Chem. Soc. 106; 5057–5068 (1984).CrossRefGoogle Scholar
  42. 42.
    Closs, G. L., Calcaterra, L. T., Green N. J., Penfield, K. W. and Miller, J. R. J. Phys. Chem. 90; 3673–3683 (1986).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • M. R. Gunner
    • 1
  • P. Leslie Dutton
    • 1
  1. 1.Department of BiochemistryUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations