FTIR Spectroscopic Investigations of the Intermediary Electron Acceptor Photoreduction in Purple Photosynthetic Bacteria and Green Plants

  • E. Nabedryk
  • S. Andrianambinintsoa
  • W. Mäntele
  • J. Breton
Part of the NATO ASI Series book series (NSSA, volume 149)


We have recently demonstrated that light-induced Fourier transform infrared (FTIR) spectroscopy can be applied to bacterial reaction centers -RCs- (1–3) as well as to photosystems from green plants (4) in order to detect changes in the molecular interactions between the pigments involved in the primary charge separation and their anchoring sites in the protein. Using FTIR difference spectroscopy the sensitivity is high enough to detect perturbations in the vibrational modes of chlorophylls and protein groups in a large complex such as a RC. For both primary electron donor photooxidation and intermediary electron acceptor photoreduction we have reported very specific absorbance changes (1–4). However, due to the non selectivity of IR spectroscopy, the FTIR signals might arise from the pigments, the protein (peptide and side chains groups), the lipids and even bound water molecules. Thus, a precise assignment of the FTIR absorbance changes to chemical bonds requires further investigations using model compounds radicals of the isolated chlorophylls as well as isotope-substituted material.


Primary Electron Donor Exchangeable Proton Primary Charge Separation Bacterial Reaction Center Purple Photosynthetic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. Mäntele, E. Nabedryk, B. A. Tavitian, W. Kreutz and J. Breton (1985) Light-induced Fourier transform infrared (FTIR) spectroscopic investigations of the primary donor oxidation in bacterial photosynthesis. FEBS Lett. 187, 227–232.CrossRefGoogle Scholar
  2. 2.
    E. Nabedryk, W. Mäntele, B. A. Tavitian and J. Breton (1986) Light-induced Fourier transform infrared spectroscopic investigations of the intermediary electron acceptor reduction in bacterial photosynthesis. Photochem. Photobiol. 43, 461–465.CrossRefGoogle Scholar
  3. 3.
    E. Nabedryk, B. A. Tavitian, M. Mäntele, W. Kreutz and J. Breton (1987) Fourier transform infrared (FTIR) spectroscopic investigations of the primary reactions in purple photosynthetic bacteria. In: “Progress in Photosynthesis Research Vol. I, pp. 177–180 (Biggins, J. ed.) Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  4. 4.
    B. A. Tavitian, E. Nabedryk, W. Mäntele and J. Breton (1986) Light-induced Fourier transform infrared (FTIR) spectroscopic investigations of primary reactions in photosystem I and photosystem II. FEBS Lett. 201, 151–157.CrossRefGoogle Scholar
  5. 5.
    W. Mäntele, A. Wollenweber, E. Nabedryk, J. Breton, F. Rashwan, J. Heinze and W. Kreutz (1987) Fourier-transform infrared (FTIR) spectroelectrochemistry of bacteriochlorophylls. In: “Progress in Photosynthesis Research, Vol. I, pp 329–332 (Biggins, J. ed) Martinus Nijhoff Publishers, Dordrecht.Google Scholar
  6. 6.
    S. Andriariambinintsoa, A.-M. Bardin, G. Berger, A. Bourdet, J. Breton, G. Hervo and E. Nabedryk. Colloque de Photosynthèse, “Caractérisation du quantasome de Rps. viridis, Rsp. rubrum et Rps. sphaeroides”, Saclay 24–25 April 1986.Google Scholar
  7. 7.
    A. Wollenweber (1986) Diplomarbeit Universität Freiburg, FRG, “Spektroelektrochemische Untersuchungen an den Bakteriochlorophyllen a und b, sowie den Bakteriophäophytinen a und b”.Google Scholar
  8. 8.
    W. Mäntele, A. Wollenweber, F. Rashwan, J. Heinze, E. Nabedryk, G. Berger and J. Breton (1987) Fourier transform infrared spectroelectrochemistry of the bacteriochlorophyll a anion radical. Photochem. Photobiol., in press.Google Scholar
  9. 9.
    M. S. Davis, A. Forman, L. K. Hanson, J. P. Thornber and J. Fajer (1979) Anion and cation radicals of bacteriochlorophyll and bacteriopheophytin b. Their role in the primary charge separation of Rhodopseudomonas viridis. J. Phys. Chem. 83, 3325–3332.CrossRefGoogle Scholar
  10. 10.
    K. Ballschmiter and J. J. Katz (1969) An infrared study of chlorophyll-chlorophyll and chlorophyll-water interactions. J. Am. Chem. Soc. 91, 2661–2677.CrossRefGoogle Scholar
  11. 11.
    D. F. Bocian, N. J. Boldt, B. W. Chadwick and H. A. Frank (1987) Near-infrared-excitation resonance Raman spectra of bacterial photosynthetic reaction centers. Implications for path-specific electron transfer. FEBS Lett. 214, 92–96.PubMedCrossRefGoogle Scholar
  12. 12.
    F. Siebert, W. Mäntele and W. Kreutz (1982) Evidence for the protonation of two internal carboxylic groups during the photocycle of bacteriorhodopsin. FEBS Lett. 141, 82–87.CrossRefGoogle Scholar
  13. 13.
    H. Michel, O. Epp and J. Deisenhofer (1986) Pigment-protein interactions in the photosynthetic reaction centre from Rhodopseudomonas viridis. The Embo Journal 5, 2445–2451.PubMedGoogle Scholar
  14. 14.
    G. Feher, R.A. Isaacson, M.Y. Okamura and W. Lubitz, ENDOR of exchangeable protons of the reduced intermediate acceptor in reaction centers from Rhodobacter sphaeroides R-26, these proceedings.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • E. Nabedryk
    • 1
  • S. Andrianambinintsoa
    • 1
  • W. Mäntele
    • 2
  • J. Breton
    • 1
  1. 1.Service de Biophysique, Département de BiologieCEN SaclayGif-sur-Yvette cedexFrance
  2. 2.Institut für Biophysik und StrahlenbiologieUniversität FreiburgFreiburgGermany

Personalised recommendations