Temperature Effects on the Ground State Absorption Spectra and Electron Transfer Kinetics of Bacterial Reaction Centers

  • Christine Kirmaier
  • Dewey Holten
Part of the NATO ASI Series book series (NSSA, volume 149)


It has been a general finding that the rates of many of the electron transfer processes in bacterial reaction centers are rather insensitive to temperature.1,2 In fact, often the rates actually increase slightly as the temperature is reduced. This is observed, for example, in Rb. sphaeroides reaction centers for electron transfer from P* to I (BPhL),3 from I (BPhL ) to the primary quinone QA,4 and for the charge recombination reaction P+QA → PQA.5–7 (P is the dimer of BChl molecules.) These findings have been taken to suggest that these reactions are activationless, or nearly so.


Electron Transfer Reaction Center Electron Transfer Reaction Charge Recombination Electron Transfer Kinetic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Kirmaier and D. Holten, Photochemistry of reaction centers from the photosynthetic purple bacteria, Photosynth. Res. 13:225 (1987).CrossRefGoogle Scholar
  2. 2.
    R. A. Marcus and N. Sutin, Electron transfer in chemistry and biology, Biochim. Biophvs. Acta 811: 265 (1985).CrossRefGoogle Scholar
  3. 3.
    N. W. Woodbury, M. Becker, D. Middendorf and W. W. Parson, Picosecond kinetics of the initial photochemical electron-transfer reaction in bacterial photosynthetic reaction centers, Biochem. 24: 7516 (1985).CrossRefGoogle Scholar
  4. 4.
    C. Kirmaier, D. Holten and W. W. Parson, Temperature and detection-wavelength dependence of the picosecond electron transfer kinetics measured in Rhodopseudomonas sphaeroides reaction centers. Resolution of new spectral and kinetic components in the primary charge separation process, Biochim. Biophvs. Acta 810: 33 (1985).CrossRefGoogle Scholar
  5. 5.
    R. K. Clayton, Effects of dehydration on reaction centers from Rhodopseudomonas sphaeroides, Biochim. Biophvs. Acta 504: 255 (1978).CrossRefGoogle Scholar
  6. 6.
    M. R. Gunner, D. E. Robertson and P. L. Dutton, Kinetic studies on the reaction center protein from Rhodopseudomonas sphaeroides: The temperature and free energy dependence of electron transfer between various quinones in the QA site and the oxidized bacteriochlorophyll dimer, J. Phvs. Chem. 90: 3783 (1986).CrossRefGoogle Scholar
  7. 7.
    G. Feher, M. Okamura and D. Kleinfeld, Electron transfer reactions in bacterial photosynthesis: Charge recombination kinetics as a structure probe, in: “Protein Structure: Molecular and Electronic Reactivity”, R. Austin, E. Buhks, B. Chance, D. DeVault, P. L. Dutton, H. Frauenfelder and V. I. Gol’danskii, eds., Springer-Verlag, New York (1987).Google Scholar
  8. 8.
    C. Kirmaier, D. Holten and W. W. Parson, Picosecond photodichroism studies of the transient states in Rhodopseudomonas sphaeroides reaction centers at 5 K. Effects of electron transfer on the six bacteriochlorin pigments, Biochim. Biophys. Acta 810: 49 (1985).CrossRefGoogle Scholar
  9. 9.
    C. Kirmaier, D. Holten and W. W. Parson, Picosecond study of the P+IQ → P+IQ electron transfer reaction in Rps. viridis reaction centers, Biophys. J. 49:586a (1986).Google Scholar
  10. 10.
    J. M. Hayes, J. K. Gillie, D. Tang and G. J. Small, Theory for spectral hole burning of the primary electron donor state of photosynthetic reaction centers, Biochim. Biophys. Acta (in press).Google Scholar
  11. 11.
    J. Jortner, Dynamics of the primary events in bacterial photosynthesis, J. Am. Chem. Soc. 102:6676 (1980).CrossRefGoogle Scholar
  12. 12.
    J. Deisenhofer, O. Epp, K. Miki, R. Huber and H. Michel, Structure of the protein subunits in the photosynthetic reaction centre of Rhodopseudomonas viridis at 3 Å resolution, Nature 318: 618 (1985).PubMedCrossRefGoogle Scholar
  13. 13.
    C.-H. Chang, D. Tiede, J. Tang, U. Smith, J. Norris and M. Schiffer, Structure of Rhodopseudomonas sphaeroides R-26 reaction center, FEBS Lett. 205: 82 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    J. P. Allen, G. Feher, T. O. Yeates, H. Komiya and D. C. Rees, Structure of the reaction center from Rhodobacter sphaeroides R-26: The cofactors, Proc. Natl. Acad. Sci. USA 84: 5730 (1987).PubMedCrossRefGoogle Scholar
  15. 15.
    H. Frauenfelder, H. Hartman, M. Karplus, I. D. Kuntz Jr., J. Kuriyan, F. Parak, G. A. Petsko, D. Ringe, R. F. Tilton Jr., M. L. Connolly and N. Max, Thermal expansion of a protein, Biochem. 26: 254 (1987).CrossRefGoogle Scholar
  16. 16.
    T. Kakitani and H. Kakitani, A possible new mechanism of temperature dependence of electron transfer in photosynthetic systems, Biochim. Biophvs. Acta 635: 498 (1981).CrossRefGoogle Scholar
  17. 17.
    A. Sarai, Possible role of protein in photosynthetic electron transfer, Biochim. Biophys. Acta 589:71 (1980).PubMedCrossRefGoogle Scholar
  18. 18.
    R. J. Shopes and C. A. Wraight, Charge recombination from the P+QA state in reaction centers from Rhodopseudomonas viridis, Biochim. Biophys. Acta 893: 409 (1987).PubMedCrossRefGoogle Scholar
  19. 19.
    R. L. Fulton and M. Gouterman, Vibronic coupling. II. Spectra of dimers, J. Chem. Phys. 41:2280 (1964).CrossRefGoogle Scholar
  20. 20.
    M. Gouterman, D. Holten and E. Lieberman, Porphyrins XXXV. Exciton coupling in μ-oxo scandium dimers, Chem. Phys. 25: 139 (1977).CrossRefGoogle Scholar
  21. 21.
    M. Z. Zgierski, Fluorescence-absorption energy gap in the stable anthracene dimer spectra, J. Chem. Phys. 59: 1052 (1973).CrossRefGoogle Scholar
  22. 22.
    A. Warshel, Role of the chlorophyll dimer in bacterial photosynthesis, Proc. Natl. Acad. Sci. USA 77:3105 (1980).PubMedCrossRefGoogle Scholar
  23. 23.
    T. Mar, C. Vadeboncoeur and G. Gingras, Different temperature dependencies of the charge recombination reaction in photoreaction centers isolated from different bacterial species, Biochim. Biophys. Acta 724: 317 (1983).CrossRefGoogle Scholar
  24. 24.
    P. O. J. Scherer, S. F. Fischer, J. K. Horber and M. E. Michel-Beyerle, On the temperature-dependence of the long-wavelength fluorescence and absorption of Rhodopseudomonas viridis reaction centers, in: Antennas and Reaction Centers of Photosynthetic Bacteria,” M. E. Michel-Beyerle, ed., Springer-Verlag, Berlin (1985).Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Christine Kirmaier
    • 1
  • Dewey Holten
    • 1
  1. 1.Department of ChemistryWashington UniversitySt. LouisUSA

Personalised recommendations