The Primary Electron Transfer in Photosynthetic Purple Bacteria: Long Range Electron Transfer in the Femtosecond Domain at Low Temperature

  • J. L. Martin
  • J. Breton
  • J. C. Lambry
  • G. Fleming
Part of the NATO ASI Series book series (NSSA, volume 149)


The conversion of light energy into chemical free energy in the reaction center (RC) of photosynthetic purple bacteria is a highly efficient process which involves very fast initial reactions able to efficiently compete with radiative lifetimes. The primary charge separation occurs between a bacteriochlorophyll dimer (P) and a bacteriopheophytin molecule (HL) located on the side of the L polypeptide subunit. The structure of the RC, as solved by X-ray crystallography, shows that a monomeric bacteriochlorophyll (BL) is located in between P and HL. The role of this molecule in the initial charge separation process is not yet understood and is the object of much current experimental and theoretical scrutinity.


Electron Transfer Electron Transfer Rate Ground State Absorption Primary Charge Separation Chemical Free Energy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J.-L. Martin, J. Breton, A.J. Hoff, A. Migus, and A. Antonetti, Proc. Natl. Acad. Sci. USA 83, 957 (1986).PubMedCrossRefGoogle Scholar
  2. 2.
    J. Breton, J.-L. Martin, A. Migus, A. Antonetti and A. Orszag, Proc. Natl. Acad. Sci. USA 83, 5121 (1986).PubMedCrossRefGoogle Scholar
  3. 3.
    M. Bixon, J. Jortner, M.E. Michel-Beyerle, A. Ogronik and W. Lersch, Chem. Phys. Lett. 140, 626 (1987).CrossRefGoogle Scholar
  4. 4.
    M. Bixon, J. Jortner, M. Plato, M.E. Michel-Beyerle, This volume..Google Scholar
  5. 5.
    A. Warshel, S. Creighton and W.W. Parson, J. Phys. Chem. In press.Google Scholar
  6. 6.
    R. Marcus, Chem. Phys. Lett. 133, 471 (1987).CrossRefGoogle Scholar
  7. 7.
    N. W. Woodbury, M. Becker, D. Middendorf and W.W. Parson, Biochem. 24, 7516 (1985).CrossRefGoogle Scholar
  8. 8.
    Y. Won and R.A. Friesner, Proc. Natl. Acad. Sci. USA 84, 5511 (1987).PubMedCrossRefGoogle Scholar
  9. 9.
    Y. Won and R.A. Friesner. This volume..Google Scholar
  10. 10.
    J. Breton, J.L. Martin, G. Fleming and J.C. Lambry. Biochem. (submitted).Google Scholar
  11. 11.
    J. Deisenhofer and H. Michel. This volume.Google Scholar
  12. 12.
    J.P. Allen, G. Feher, T.O. Yeates, H. Komiya and D.C. Rees. This volume.Google Scholar
  13. 13.
    D.M. Tiede, D.E. Budil, J. Tang, O. El-Rabbani, J.R. Norris, C.H. Chang and M. Schiffer. This volume.Google Scholar
  14. 14.
    H. Sheer, D. Beese, R. Steiner and A. Angerhofer. This volume.Google Scholar
  15. 15.
    J. Breton, J.L. Martin, J. Petrich, A. Migus and A. Antonetti, FEBS 209, 37 (1986).CrossRefGoogle Scholar
  16. 16.
    G. Fleming, J.L. Martin and J. Breton. Nature (Submitted).Google Scholar
  17. 17.
    V.A. Shuvalov, A.O. Ganago, A.V. Klevanik and A. Ya. Shkuropatov. This volume.Google Scholar
  18. 18.
    J. Breton. This volume.Google Scholar
  19. 19.
    R. Marcus. This volume.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • J. L. Martin
    • 1
  • J. Breton
    • 2
  • J. C. Lambry
    • 1
  • G. Fleming
    • 3
  1. 1.Laboratoire d’Optique Appliquée, INSERM U275Ecole Polytechnique ENSTAPalaiseau CedexFrance
  2. 2.Service de BiophysiqueCEN/SaclayGif-sur-YvetteFrance
  3. 3.Department of ChemistryThe University of ChicagoUSA

Personalised recommendations